Comparison of the Captopril and the Saline Infusion Test for Excluding Aldosterone-Producing Adenoma

Gian Paolo Rossi, Anna Belfiore, Giampaolo Bernini, Giovambattista Desideri, Bruno Fabris, Claudio Ferri, Gilberta Giacchetti, Claudio Letizia, Mauro Maccario, Francesca Mallamaci, Massimo Mannelli, Gaetana Palumbo, Damiano Rizzoni, Ermanno Rossi, Enrico Agabiti-Rosei, Achille C. Pessina, Franco Mantero; for the Primary Aldosteronism Prevalence in Italy Study Investigators

Abstract—We performed a prospective head-to-head comparison of the accuracy of the captopril test (CAPT) and the saline infusion test (SAL) for confirming primary aldosteronism due to an aldosterone-producing adenoma (APA) in patients with different sodium intake. A total of 317 (26.9%) of the 1125 patients screened in the Primary Aldosteronism Prevalence in Italy Study underwent both CAPT and SAL. They were composed of the patients with a high aldosterone/renin ratio baseline and 1 every 4 patients without such criterion. The accuracy of post-CAPT or post-SAL plasma aldosterone values for diagnosing APA was estimated with the area under the receiver operator characteristics curves. Primary aldosteronism was found in 120 patients, of which 46 had an APA. No untoward effect occurred with either test. The area under the receiver operator characteristics curve of plasma aldosterone for both tests was higher (P < 0.0001) than that under the diagonal, but the between-test difference was borderline significant (P = 0.054). The optimal aldosterone cutoff value for identifying APA was 13.9 and 6.75 ng/dL for the CAPT and SAL, respectively. Even at these cutoffs, sensitivity and specificity were moderate because of overlap of values between patients with and without APA. When examined in relation to sodium intake, the accuracy of the SAL surpassed that of the CAPT in the patients with a sodium intake ≤ 130 mEq per day; this difference waned at a higher Na+ intake. Thus, both the CAPT and the SAL are safe and moderately accurate for excluding APA; at a sodium intake > 7.6 g per day, the SAL offers no advantage over the easier-to-perform CAPT. (Hypertension. 2007;50:424-431.)

Key Words: secondary hypertension • aldosterone • aldosteronism • clinical science • secondary

The Primary Aldosteronism Prevalence in Italy (PAPY) Study showed that primary aldosteronism (PA) is far more common than usually perceived: 11.2% of 1125 newly diagnosed hypertensive patients referred to hypertension (HT) centers had PA, which was because of an aldosterone-producing adenoma (APA) in 4.8% of the subjects. The potential curability and prevention of excess cardiovascular damage (reviewed in Reference 2) and events also underscores the importance of developing accurate strategies for timely diagnosing of APA.

The aldosterone/renin ratio (ARR) and the multivariable approaches proposed to this end are sensitive but moderately accurate, because they do not completely differentiate patients with PA and those with primary (essential) HT (PH), as initially believed. The ARR allows discrimination of patients with PA from those with low-renin PH only if aldosterone is overtly increased despite a high sodium (Na+) intake, provided that low or very low plasma renin activity can be accurately measured, which is rarely feasible in current laboratory practice. Moreover, calculation of the ARR under some antihypertensive medications, like β-adrenergic blockers, which blunt renin but have little effect on aldosterone secretion, can generate false-positive ARR, thus further lowering its specificity.

Identification of APA and unilateral hyperplasia, the surgically curable forms of PA, requires adrenal vein sampling (AVS), which is invasive and minimally risky. Hence, a confirmatory test is necessary in the patients with a positive screening test to select candidates for AVS. Available confirmatory tests are composed of the oral sodium loading test, the saline infusion test (SAL), the captopril test (CAPT), or the fludrocortisone suppression test. Their validation stands on studies on few patients with APA, mostly performed retrospectively, and with another test as
To date, only one study has compared the performance of the CAPT test with the oral Na\(^+\) loading,\(^{20}\) and although in one of the studies that introduced the CAPT the SAL was used as referent,\(^{24}\) there was no head-to-head comparison of the CAPT and the SAL. Moreover, notwithstanding the well-known inverse relationship between renin and aldosterone secretion on one hand and Na\(^+\) intake on the other, there is no information on the impact of Na\(^+\) balance on either test performance.

The diagnostic performance of a test can be evaluated with a conclusive diagnosis as referent, which is feasible only in APA, because there are no criteria for reliably diagnosing idiopathic hyperaldosteronism (IHA). Therefore, the PAPY Study Steering Committee planned to prospectively compare the performance of the CAPT and SAL for excluding APA and to evaluate the effect of Na\(^+\) intake on this performance.

Subjects and Methods

The PAPY Study protocol followed the Statement for Reporting Studies of Diagnostic Accuracy recommendations,\(^{29}\) as detailed.\(^{1}\) The procedures followed were in accordance with institutional guidelines; the protocol was approved by the institutional review committee of the University of Padua and adhered to the principles of the Declaration of Helsinki. An informed written consent was obtained from each participant.

Briefly, consecutive, newly diagnosed hypertensive patients, referred to specialized HT centers nationwide in Italy, were enrolled after an informed consent was obtained.\(^{1}\) A previous diagnosis of a secondary form of HT and the patient’s refusal to participate in the study were the exclusion criteria.

The CAPT and the SAL

The flow chart shown in Figure 1 summarizes the study protocol. All of the patients underwent measurement of the 24-hour Na\(^+\) urine excretion. The CAPT was performed in the sitting position with 50 mg of PO captopril.\(^{1}\) For the head-to-head comparison of the 2 tests, those who had an ARR \(\geq 40\) baseline, and/or \(\geq 30\) after captopril, and/or a logistic discriminant function score \(\geq 0.50\) (please see supplemental data available at http://hyper.ahajournals.org) and 1 of every 4 consecutive patients not fulfilling such criteria underwent the SAL.

For calculation of the ARR, the lowest value of the denominator, eg, plasma renin activity (PRA), was set to 0.2 ng/mL per hour to avoid overinflating the ARR. For both tests, patients were prepared from the pharmacological standpoint as described (data supplement).\(^{1}\) Treatment with a long-acting calcium channel blocker and/or doxazosin was allowed if necessary for minimizing the risks of uncontrolled HT. The SAL was performed only when serum K\(^+\) levels were \(\geq 3.0\) mEq/L, because hypokalemia blunts aldosterone secretion and, therefore, might preclude the detection of suppressibility of aldosterone with volume expansion. Thus, oral potassium supplementation was allowed during the days before the SAL.

The SAL involved infusion of 2 L of 0.9% saline IV over 4 hours.\(^{21}\) Before and 4 hours after the infusion, PRA, plasma aldosterone, cortisol, and serum K\(^+\) were measured (see the data supplement).

Further Tests

To avoid biasing the test performance evaluation, the further diagnostic workup (Figure 1) was based only on the results of ARR baseline, and/or after the CAPT, and/or the logistic discriminant function test\(^{4}\) (see the data supplement).\(^{1}\) The patients positive at such tests were submitted to an imaging test for identification of adrenocortical nodules,\(^{1}\) but they were also submitted to AVS\(^{17}\) or to dexamethasone-suppressed adrenocortical scintigraphy to identify a lateralized aldosterone excess production, regardless of the imaging test results.\(^{1}\) AVS was deemed to provide a lateralization diagnosis only if bilaterally selective;\(^{17}\) corticotropin stimulation was not systematically used during AVS, because although it improves assessment of selectivity of catheterization, it does not improve the diagnostic accuracy.\(^{30,31}\)

Biochemical Measurements

Serum creatinine, serum and urine Na\(^+\) and K\(^+\) levels, PRA, aldosterone, cortisol, and glomerular filtration rate were measured as described;\(^{1}\) hypokalemia was defined as serum K\(^+\) \(\leq 3.5\) mEq/L. Normal ranges, intra-assay and interassay coefficients of variation, and antibody cross-reactivity for the hormonal measurements have already been reported.\(^{1}\)

Diagnostic Criteria

Identification of APA required all of the following criteria: (1) evidence of PA at the screening test as defined above; (2) lateralization of aldosterone secretion at AVS or at \(^{31}\)I-norcholesterol dexamethasone–suppressed adrenocortical scintigraphy; (3) evidence of adenoma at computed tomography, and/or magnetic resonance, and/or surgery, and/or pathology; and (4) demonstration of normokalemia and HT cure, or improvement, at follow-up after adrenalectomy by the criteria (see the data supplement) already
TABLE 1. Anthropometric and Biochemical Characteristics of the Patients With PH and With PA Caused by an APA and an IHA

<table>
<thead>
<tr>
<th>Variable</th>
<th>PH</th>
<th>P</th>
<th>APA</th>
<th>P</th>
<th>IHA</th>
<th>P (IHA vs PH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>46±11</td>
<td>0.031</td>
<td>51±13</td>
<td>NS</td>
<td>48±11</td>
<td>NS</td>
</tr>
<tr>
<td>BMI, kg m⁻²</td>
<td>27.4±4.7</td>
<td>NS</td>
<td>27.4±4.1</td>
<td>NS</td>
<td>26.9±4.1</td>
<td>NS</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>147±18</td>
<td>0.002</td>
<td>158±23</td>
<td>NS</td>
<td>153±16</td>
<td>0.066</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>97±11</td>
<td>NS</td>
<td>97±10</td>
<td>NS</td>
<td>100±10</td>
<td>0.035</td>
</tr>
<tr>
<td>Serum K⁺, mEq L⁻¹</td>
<td>4.1±0.4</td>
<td><0.0001</td>
<td>3.4±0.5</td>
<td><0.0001</td>
<td>3.9±0.4</td>
<td>0.028</td>
</tr>
<tr>
<td>Na⁺, V, mEq day⁻¹</td>
<td>145 (135 to 155)</td>
<td>NS</td>
<td>131 (110 to 153)</td>
<td>NS</td>
<td>136 (122 to 151)</td>
<td>NS</td>
</tr>
<tr>
<td>GFR, mL min⁻¹</td>
<td>90±20</td>
<td>NS</td>
<td>84±16</td>
<td>NS</td>
<td>90±20</td>
<td>NS</td>
</tr>
<tr>
<td>PRA, ng mL⁻¹ h⁻¹</td>
<td>1.31 (1.00 to 1.63)</td>
<td>0.002</td>
<td>0.64 (0.31 to 0.98)</td>
<td>NS</td>
<td>0.52 (0.37 to 0.68)</td>
<td><0.001</td>
</tr>
<tr>
<td>Plasma aldosterone, ng dL⁻¹</td>
<td>17.9 (16.3 to 19.6)</td>
<td><0.0001</td>
<td>32.1 (26.0 to 38.2)</td>
<td>NS</td>
<td>25.6 (22.4 to 28.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>ARR, (ng dL⁻¹)/(ng mL⁻¹ h⁻¹)</td>
<td>13.7 (12.2 to 16.3)</td>
<td><0.0001</td>
<td>50.2 (26.5 to 123.2)</td>
<td>NS</td>
<td>49.2 (32.9 to 77.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Plasma cortisol, nmol L⁻¹</td>
<td>146 (137 to 154)</td>
<td>NS</td>
<td>131 (120 to 143)</td>
<td>NS</td>
<td>143 (130 to 156)</td>
<td>NS</td>
</tr>
</tbody>
</table>

Data are mean±SD or 95% CI, in parentheses, for variables not normally distributed. BMI indicates body mass index; Na⁺, V, sodium urinary excretion; ARR, aldosterone (ng dL⁻¹)/PRA (ng mL⁻¹ h⁻¹) ratio; NS, not significant.

Results

Baseline Characteristics

The baseline features of the patients, divided by diagnosis, are shown in Table 1. The APA patients were older, had higher systolic blood pressure (BP), and also had baseline plasma aldosterone and ARR, whereas renin and K⁺ levels were lower than in the PH patients. The 74 patients presumed to have IHA did not differ from the APA patients for baseline plasma aldosterone, PRA, and cortisol levels, although serum K⁺ was higher and ARR lower than in the APA patients. The SAL was performed, on average, 4 weeks after the screening; however, there were no significant differences among the PH, APA, aldosterone, cortisol, and ARR baseline values measured at the screening test and at the SAL.

At the time of the CAPT and SAL, 41% of the patients were untreated, 35% were on a calcium channel blocker or doxazosin, and 24% were on both agents. The APA patients required more often than the other groups (42%) a combination of calcium channel blocker or doxazosin to achieve BP control. Baseline PRA, aldosterone, and cortisol, either within the entire cohort or in each diagnosis group, did not differ across treatment groups.

CAPT

Captopril lowered BP but caused no symptomatic hypotension and adverse effects. It increased PRA in all of the groups (Table 2); post-CAPT PRA was higher in the PH than in the APA and IHA groups (P<0.05) but did not differ between APA and IHA. Aldosterone and cortisol concentrations fell in all of the groups. Aldosterone was higher in APA and IHA than in the PH group (both P<0.0001), albeit with a values overlap.

The fall of aldosterone after CAPT showed no correlation with the increase of PRA in any diagnosis group. It correlated with the fall of cortisol in the all cohort (ρ=0.240; P<0.001) and in the PH group (ρ=0.181; P=0.05) but not in the APA and IHA groups.

SAL

A raise of BP was occasionally seen with SAL, but no adverse effects and no change of serum K⁺ occurred (Table 2). The SAL lowered PRA, aldosterone, and cortisol concentrations significantly without differences across diagnosis and treatment groups. The post-SAL aldosterone was higher in the APA and the IHA than in the PH group (both P<0.0001), albeit with a values overlap. By contrast, there were no significant differences of PRA and cortisol. The rise of aldosterone post-SAL correlated with that of PRA in the all cohort (ρ=0.177; P<0.001), the PH (ρ=0.304; P=0.001), and APA (ρ=0.396; P=0.030) groups but not in the IHA group (ρ=0.253; P not significant). The fall of aldosterone correlated with that of cortisol in the all cohort (ρ=0.450; P<0.001), the PH...
The Diagnostic Accuracy of the CAPT and SAL

Table 3 shows the AUC of plasma aldosterone after the CAPT and SAL and the optimal cutoff values for diagnosing APA, IHA, and PA in the all cohort. Because the AUC under the ROC curve was higher ($P<0.0001$) than that under the diagonal, both tests were useful to make all 3 of the diagnoses. For both the CAPT (0.769±0.042) and the SAL (0.854±0.030), the accuracy was highest for identification of APA and lowest for identification of IHA in the all cohort.

The optimal cutoff values of aldosterone were higher for post-CAPT than for post-SAL, suggesting that within the (different) time courses of these tests, the latter provides a more potent suppression of aldosterone secretion. However, for both tests, they generally fell in a narrow range. Post-CAPT plasma aldosterone value of 13.9 ng/dL, which corresponded with the highest accuracy for identification of APA, furnished only moderate sensitivity (69.6; 95% CI: 54.2 to 82.2) and specificity (74.0; 95% CI: 67.2 to 80.0). The sensitivity (82.6; 95% CI: 68.6 to 92.2) and the specificity (75.1; 95% CI: 68.5 to 81.0) were slightly higher for the post-SAL at the plasma aldosterone value of 6.75 ng/dL that represents the highest point estimate of accuracy for identification of APA. The between-tests difference of accuracy was only borderline significant ($P=0.054$; Figure 2). Practically identical conclusions were reached when the analysis was confined to the centers that could perform AVS.1

The CAPT and SAL End Points

To investigate whether the PRA- or cortisol-corrected aldosterone values could improve the diagnostic accuracy over the raw plasma aldosterone values, we measured the AUC under the ROC curve for identification of APA of the PRA- and cortisol-corrected aldosterone values after CAPT and SAL. We found no significant increase of the AUC between the raw and the PRA- or cortisol-adjusted aldosterone values (data not shown) for either test.
Table 4. Operative Features (Definition Available in the Online Data Supplement) of the CAPT and the SAL for the Identification of APA According to an Na⁺ Intake Below or Above the Population Median

<table>
<thead>
<tr>
<th>Na⁺ Intake</th>
<th>ROC Curve</th>
<th>PA, ng/dL</th>
<th>Sensitivity</th>
<th>Specificity</th>
<th>Positive Likelihood Ratio</th>
<th>Negative Likelihood Ratio</th>
<th>Positive Predictive Value</th>
<th>Negative Predictive Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AUC (95% CI)</td>
<td>>15.9*</td>
<td>56.0 (34.9 to 75.6)</td>
<td>81.0 (71.7 to 88.4)</td>
<td>2.96</td>
<td>0.54</td>
<td>43.7</td>
<td>87.5</td>
</tr>
<tr>
<td>CAPT</td>
<td>Below median</td>
<td>0.691 (0.601 to 0.772)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Above median</td>
<td>0.847 (0.771 to 0.906)</td>
<td>>13.4*</td>
<td>85.7 (63.6 to 96.8)</td>
<td>70.3 (60.4 to 79.0)</td>
<td>2.89</td>
<td>0.20</td>
<td>37.5</td>
</tr>
<tr>
<td>SAL</td>
<td>Below median</td>
<td>0.849 (0.772 to 0.907)</td>
<td>>6.61*</td>
<td>84.0 (63.9 to 95.4)</td>
<td>75.8 (65.9 to 84.0)</td>
<td>3.47</td>
<td>0.21</td>
<td>47.7</td>
</tr>
<tr>
<td></td>
<td>Above median</td>
<td>0.856</td>
<td>>11.3*</td>
<td>61.9</td>
<td>96.1</td>
<td>15.79</td>
<td>0.40</td>
<td>76.5</td>
</tr>
</tbody>
</table>

The sensitivity, specificity, positive and negative likelihood ratio, and positive and negative predictive values were calculated at the APA prevalence rate found in our patient cohort below and above median Na⁺ intake, which were 20.8% and 17.2%, respectively.

*This cutoff value corresponded with the highest accuracy, eg, the best combination of sensitivity and specificity.

Effect of Sodium Intake on the CAPT and SAL Performances
We found that the accuracy of the CAPT for the diagnosis of APA was higher at an Na⁺ intake above rather than below the population median (Table 4 and Figure S2 online). By contrast, the SAL accuracy was unaffected by Na⁺ intake. Hence, the borderline significant difference favoring the SAL over the CAPT became significant in the low sodium and waned in the Na⁺ half of the patients. The Na⁺ intake not only affected the aldosterone optimal cutoff values for both the CAPT and the SAL but also the operative features of both tests (Table 4).

Predictive Value of the CAPT and SAL
The positive predictive value and the negative predictive value for the CAPT and SAL as functions of the APA prevalence in the patients divided by Na⁺ intake are shown in Figure 3. In the patients screened at most referral centers, the APA prevalence is likely to be <50%; hence, both tests perform better at excluding than at confirming APA. Na⁺ intake had an impact on the predictive values: at a low Na⁺ intake, the SAL had a higher negative predictive value than the CAPT; at a high Na⁺ intake, the SAL had a higher positive predictive value but a lower negative predictive value than the CAPT.

Discussion
Because the screening tests for PA have a low specificity, the selection of the PA patients for AVS requires demonstration of nonsuppressibility of aldosterone after dynamic testing. To this end, both the CAPT and SAL can feature ideal confirmatory tests, but which test to prefer remains contentious, because they did not undergo a head-to-head comparison. Moreover, their performances were examined in few selected patients, mostly in comparison with another test that was used as the "gold diagnostic" standard. Instead, they should be tested for accuracy at identifying APA, the only causes of PA that can be unequivocally diagnosed. Thus, in the PAPY Study, as a conclusive diagnosis of APA was established with rigorous criteria, we could evaluate of the diagnostic performance of CAPT and SAL in the largest series of APA ever reported.

Treatment Effects and Accuracy of End Points of the CAPT and SAL for Confirming APA
There was no significant treatment effect on hormone values either at baseline or after the CAPT and SAL, indicating that a long-acting calcium channel blocker and/or doxazosin does not markedly influence the aldosterone response to acute angiotensin-converting enzyme inhibition and volume loading. From the practical standpoint, this implies that these agents can be allowed during the CAPT and SAL to avoid the risks of uncontrolled HT.

Aldosterone decreased after the CAPT and SAL, but in the APA and IHA groups, it remained higher than in the PH patients, indicating that aldosterone after both tests carries a diagnostic gain over baseline data. The significant differences of AUC (from the diagonal AUC) for identification of APA, IHA, and PA for both tests (Table 3) confirm their diagnostic usefulness. However, at the plasma aldosterone value providing the highest accuracy for identification of APA, the sensitivity and specificity of the CAPT and the SAL were moderate. Overall, the accuracy of the SAL was borderline significantly (P=0.054) higher than that of the CAPT. The optimal plasma aldosterone cutoff value after the CAPT (13.9 ng/dL) was ~2-fold higher than that (6.75 ng/dL) after the SAL, indicating that the latter test induces a much greater degree of suppression of aldosterone secretion than the former, at least within the time courses of the 2 tests. We cannot exclude that a greater aldosterone suppression could occur at a later time point after CAPT; however, this potential advantage has to be weighed against the costs and inconvenience of doubling the time of this test. Moreover, it has to be considered that these optimal cutoffs can differ slightly at other centers depending on several factors, including the aldosterone assay, the test conditions, the sodium intake, etc.

With either test, there was no increase of the AUC when the PRA- or cortisol-adjusted aldosterone values were used instead of the raw aldosterone values. Thus, our results do not confirm the contention that the measurements of PRA and cortisol improve the diagnostic accuracy of the SAL.

A conclusive diagnosis of APA was largely unavailable in previous studies, because AVS and/or follow-up-based diagnostic criteria were not systematically used. Moreover, the diagnosis of PA was based on the SAL results itself, which introduced a tautology bias, or the patients with severe HT,
who compose a substantial proportion of the APA patients, were excluded. Recent studies with other tests as referents did not confirm the high accuracy of the SAL originally reported; studies evaluating the SAL versus the fludrocortisone test as a referent also concluded that the SAL was moderately accurate. The ARR after 25 mg of captopril, ie, half the dose used in our study, allowed identification of 6 PA patients with normal ARR baselines. The same low dose was used in a head-to-head comparison of the CAPT with the oral Na⁺ loading where a post-CAPT aldosterone value of 8.5 ng/dL provided a high sensitivity (97%) close to that (100%) of the Na⁺ loading. However, specificity and accuracy could not be determined, because there were only 5 patients with PH in that study; moreover, Na⁺ intake was not controlled during the CAPT. Thus, our results, consistent with previous studies, indicate overall that both the CAPT and the SAL are moderately accurate for identifying APA.

Accuracy of the CAPT and SAL According to Na⁺ Intake
A low Na⁺ intake activates the renin-angiotensin-aldosterone system and, therefore, might alter the results of the CAPT and SAL; however, Na⁺ intake was not taken into consideration in studies supporting use of these tests. By splitting our patients according to the median of daily urinary Na⁺ excretion, we found that the SAL performed similarly in both cohorts. By contrast, the CAPT performance was markedly affected by Na⁺ intake: a <130 mEq per day Na⁺ intake resulted into a significant (P=0.023) decrease of the AUC (Figure S2). Thus, the fall of aldosterone after acute volume expansion is insensitive to dietary Na⁺ intake, whereas that in response to acute angiotensin-converting enzyme inhibition is affected by Na⁺ intake. From the practical standpoint, this implies that an Na⁺ intake >130 mEq per day should be recommended during the days before the test, because an Na⁺-restricted diet might impair the diagnostic accuracy of the CAPT.

Positive and Negative Predictive Values of the CAPT and SAL
The positive predictive value, eg, the probability that the disease is present when the test is positive, and the negative predictive value, eg, the probability that the disease is absent when the test is negative, can be most interesting for clinicians, because they allow determination of the performance of both tests in their own patient population. Figure 3 shows a plot of these predictive values for the CAPT and SAL as a function of APA prevalence. It shows that, at the prevalence of APA (~50%) seen at most referral centers, both tests perform better at excluding than at confirming the diagnosis, and, thus, they should be viewed as “exclusion” rather than confirmatory tests.

Not unexpectedly, the Na⁺ intake had affected the predictive values: at a low Na⁺ intake, the positive predictive value of the CAPT and SAL were similar, but the negative predictive value of the SAL exceeded that of the CAPT. At a high Na⁺ intake, the positive predictive value of the SAL was higher than that of the CAPT, but the negative predictive value of the CAPT exceeded that of the SAL.

Safety of the CAPT and SAL
Although we used a captopril dose that was twice that used previously, the CAPT was well tolerated, and caused neither significant hypotension nor changes of serum K⁺ (Table 2). Likewise, no adverse effects or changes of serum K⁺ were seen with the SAL, although a raise of BP was occasionally seen.

Limitations of the Study
Albeit done prospectively in newly diagnosed hypertensive patients referred to specialized HT centers, most patients investigated in the PAPY Study had, in fact, mild HT. Thus, how relevant the current findings are to a population with
more severe HT remains unknown. Moreover, the prespecified ARR of 40 used in the PAPY Study for the screening of PA is quite conservative. Hence, we cannot totally exclude that with such high ARR some APA could be overlooked. It might also be that few were misdiagnosed as IHA because of the tight criteria for identifying APA, the lack of availability of AVS at some centers, and the intrinsic insensitivity of dexamethasone-suppressed adrenocortical scintigraphy for diagnosing APA, as discussed.1 Despite these limitations, because of the lack of accepted criteria to diagnose IHA, which, therefore, can only be presumed, there is no option other than to base investigation of diagnostic tests on the “firm ground” of the APA diagnosis. Thus, it is worth mentioning that our conclusions on the CAPT and SAL performances remained unchanged after restricting our analysis to the centers that performed AVS. Thus, the tight diagnostic criteria used for APA are strengths rather than weaknesses of this study.

It might also be argued that the CAPT and SAL performances were overestimated, because more than half of the patients were preselected for these tests based on the ARR results at baseline and after captopril. However, our protocol reflects common current practice, because these tests are mostly regarded as confirmatory. Moreover, the relatively large cohort of patients without PA investigated in this study represents a safeguard from this potential bias. Finally, because we excluded patients with heart and/or renal failure from this study, the safety of these tests under those conditions needs to be investigated.

Conclusions
This study allows the following conclusions: (1) even when applied to populations with enriched prevalences of PA, the accuracy of the CAPT and SAL is moderate, and false-positive and false-negative results are to be expected; (2) both tests are sensitive for the identification of APA, and their accuracy did not differ significantly at an adequate Na+ intake; and (3) under the most common conditions of prevalence of APA, both the CAPT and SAL are more helpful at excluding rather than at confirming the presence of APA. Because captopril lowers BP, whereas the saline infusion might increase it, and because the CAPT is more simple and cheaper, it should be preferred to the SAL, provided that the patients are on Na+ intake of ≥130 mEq per day (7.6 g of NaCl per day).

Perspectives
Because it is likely that the even the high prevalence rate of PA found in the PAPY Study underestimated the real prevalence of this disease,6 future work should be aimed at determining the SAL and CAPT performances in patients selected based on lower cutoff values of the ARR versus those determined in the PAPY Study.

Appendix
A list of all Primary Aldosteronism Prevalence in Italy Study investigators is given in Table 5.

Sources of Funding
This study was supported by research grants from The Foundation for Advanced Research in Hypertension and Cardiovascular Diseases (FORICA) and the Società Italiana dell’Ipertensione Arteriosa.

Disclosures
None.

References
5. Rossi E, Regolisi G, Negro A, Sani C, Davoli S, Perazzoli F. High prevalence of primary aldosteronism using postcaptopril plasma aldoste-
15. Rossi GP, Pitter G, Miotto D. To stimulate or not to stimulate: is adrenocorticotropic hormone testing necessary, or not? J Hypertens. 2007;25:481–484.
30. Rossi GP, Pitter G, Miotto D. To stimulate or not to stimulate: is adrenocorticotropic hormone testing necessary, or not? J Hypertens. 2007;25:481–484.
Comparison of the Captopril and the Saline Infusion Test for Excluding Aldosterone-Producing Adenoma

Gian Paolo Rossi, Anna Belfiore, Giampaolo Bernini, Giovambattista Desideri, Bruno Fabris, Claudio Ferri, Gilberta Giacchetti, Claudio Letizia, Mauro Maccario, Francesca Mallamaci, Massimo Mannelli, Gaetana Palumbo, Damiano Rizzoni, Ermanno Rossi, Enrico Agabiti-Rosei, Achille C. Pessina and Franco Mantero

for the Primary Aldosteronism Prevalence in Italy Study Investigators

Hypertension. 2007;50:424-431; originally published online June 25, 2007;
doi: 10.1161/HYPERTENSIONAHA.107.091827

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/50/2/424

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2007/06/18/HYPERTENSIONAHA.107.091827.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/
Subjects and Methods

The PAPY Study protocol followed the Statement for reporting Studies of Diagnostic Accuracy (STARD) recommendations,¹ and the requirements of the Declaration of Helsinki, as detailed.² Briefly consecutive newly diagnosed hypertensive patients, referred to specialized hypertension (HT) centers nationwide in Italy, were enrolled after an informed consent was obtained.² A prior diagnosis of a secondary form of HT and the patient’s refusal to participate in the study were the exclusion criteria.

The Captopril test (CAPT) and the saline infusion test (SAL)

Patients underwent the protocol shown in the flow-chart (Figure 1), including measurement of the 24-hour Na⁺ urine excretion, and the CAPT that was performed in the sitting position with 50 mg oral captopril.²

The aldosterone (in ng/dl) / plasma renin activity (PRA, in ng/ml/hr) ratio (ARR), baseline and after captopril, and a score estimating the probability of primary Aldosteronism (PA) based on a previously validated multivariate logistic discriminant analysis (LDF Score),³ were calculated to determine the need for further testing (see below). Briefly, this score is derived using the following logistic function:

\[
\text{Probability (x)} = \frac{e^{bx}}{1 + e^{bx}}
\]

where
\[
bx = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_n x_n,
\]

\[b_i = \text{coefficients calculated by discriminant analysis} \ (i=0, 1, \ldots, n)\] and
\[x_i = \text{value of the discriminant tests} \ (i=1, 2, \ldots, n).
\]

In this function the probability (x) estimates the probability of Aldosterone-producing adenoma (APA) and

\[
bx = 2.55 - 2.86 \cdot \text{sitting PRA} + 0.0177 \cdot \text{captopril A} - 1.46 \cdot \text{serum K}^+.
\]

For calculation of the ARR the lowest value of the denominator, e.g. PRA was set to 0.2 ng/ml/h to avoid over-inflating the ARR in patients without overt elevation of plasma aldosterone.
For the head-to-head comparison of the two tests, those who had an ARR ≥ 40 baseline, and/or ≥ 30 after captopril, and/or a logistic discriminant function (LDF) score ≥ 0.50 and one every four consecutive patients not meeting such criteria underwent the SAL.

For both tests treatment with mineralocorticoid receptor antagonists was withdrawn for at least 6 weeks; other agents, including diuretics, β-blockers, ACE inhibitors, and angiotensin II type 1 receptor blockers, were stopped at least two weeks before. Treatment with a long-acting calcium channel blocker (CCB) and/or doxazosin was allowed, if necessary for minimizing the risks of uncontrolled HT. The SAL was performed only when serum K+ levels were ≥ 3.0 mEq/L since hypokalemia blunts aldosterone secretion, and therefore might preclude the detection of suppressibility of aldosterone with volume expansion. Thus, oral potassium supplementation was allowed during the days before the SAL.

The SAL involved infusion of 2 liters of 0.9% saline i.v. over 4 hours, with beginning between 8.00 and 9.30 a.m., while subjects remained recumbent. Before and four hours after the infusion, PRA, plasma aldosterone, cortisol, and serum K+ were measured.

Further tests

To avoid biasing the test performance evaluation, the protocol required that the further diagnostic work-up (Figure 1) was based only on the results of ARR baseline, and/or after the CAPT, and/or the LDF test estimated as described in detail. All the patients positive at such tests were submitted to an imaging test for identification of adrenocortical nodules, but regardless of these results, the patients with PA at the screening tests, were submitted to AVS, or to dexamethasone-suppressed adrenocortical scintigraphy, to identify a lateralized aldosterone excess production. AVS was deemed to provide a lateralization diagnosis only if bilaterally selective as described. ACTH stimulation was not systematically used during AVS, because it does not improve the diagnostic accuracy.
Biochemical measurements

Serum creatinine, serum and urine Na\(^+\) and K\(^+\) levels, PRA, aldosterone, and cortisol were measured as described\(^2\); hypokalemia was defined as serum K\(^+\) ≤ 3.5 mEq/L. Glomerular filtration rate (GFR) was estimated as described.\(^8\) Normal ranges, intra- and inter-assay coefficient of variation and antibody cross-reactivity for the hormonal measurements have already been reported.\(^2\)

Diagnostic criteria

Identification of APA required all the following criteria: 1) evidence of PA at the screening test as defined above; 2) lateralization of aldosterone secretion at AVS or at \(^{131}\)I-norcholesterol dexamethasone-suppressed adrenocortical scintigraphy; 3) evidence of adenoma at computerized tomography (CT) and/or magnetic resonance (MR) and/or surgery and/or pathology; 4) demonstration of normokalemia and hypertension cure, or improvement, at follow-up after adrenalectomy by the criteria already described.\(^2\)

At completion of the diagnostic work-up it was determined if the patient had PA or not. The aforementioned follow-up information was taken into consideration and centrally validated by an adjudication committee to ensure homogeneity of the diagnosis of APA across centers. Patients with PA, but without conclusive evidence for a lateralized aldosterone excess were presumed to have IHA.

Statistical analysis

A normal distribution was attained by appropriate transformations of PRA, aldosterone, and cortisol, that showed a skewed distribution. One-way ANOVA followed by Bonferroni’s test post-hoc was used to compare quantitative variables between groups. Categorical variables distribution was investigated by chi-square analysis; correlation was assessed by non-parametric Spearman test. Significance was set at \(p < 0.05\).

For the definition of the operative features of the diagnostic tests see Table I.
The cutoff values that gave the highest accuracy, e.g. the best combination of sensitivity and false positive rate, were determined by the plot of sensitivity/specificity versus criterion value. We assessed the accuracy of the CAPT and SAL for identifying APA, IHA, and PA at large by the area under the receiver operator characteristics (ROC) curve (AUC). The AUC can be interpreted as the average value of sensitivity for all possible values of specificity or the average value of specificity for all possible values of sensitivity. When the ROC curve coincides with the diagonal line, the AUC is equal to 0.50 and, therefore, the test cannot discriminate between groups; when there is no value overlapping between the groups the AUC equals 1 and the ROC curve reaches the upper left corner of the plot. The ROC curves comparison was performed with the MedCalcTM software (vers. 8.1.1.0 MedCalc Software, 2006, Mariakerke, Belgium).

Power of the study
A preliminary power calculation showed that a total of 134 patients furnished a 90% statistical power to show a statistical difference (at an \(\alpha \) error of 0.05) of 0.350 between the AUC under the test ROC curve and the diagonal line. The pair-wise within-patient comparison design of this study, likely provided an even greater power for the CAPT and SAL comparison. Thus, with 197 patients with PH and 46 with APA and with this pair-wise within-patient design the study had a power > 95% to investigate the accuracy of the CAPT and the SAL for diagnosing APA.

References

Captures for the Figures ONLINE

Fig. S1: The box and whisker plot (median, interquartiles range and extreme values) shows the plasma levels of aldosterone after the Captopril (CAPT, left panel) and the saline infusion test (SAL, right panel) in the patients with primary (essential) hypertension (PH), aldosterone-producing adenoma (APA) and idiopathic hyperaldosteronism (IHA). On average values were higher (p<0.001) in both the APA and the IHA group, as compared to the PH group, but there was an overlap of individual values across groups.

Fig. S2: The panels show the Receiver Operator Characteristics curve of plasma aldosterone after the Captopril (CAPT, left panels) and the saline infusion test (SAL, right panels) for the identification of APA in the patients divided into those above (upper panels) and those below (lower panels) the population median (130 mEq/day) of Na\(^+\) intake. The AUC, significance (vs the area under the diagonal) and the optimal cutoff value of plasma aldosterone are shown in the inset. At the high Na\(^+\) intake the AUC of the CAPT and SAL were similar, but at the low Na\(^+\) intake the AUC of the SAL was significantly (p = 0.023) better than that of the CAPT.
Table S1. Definitions of the operative features of diagnostics tests

- **Sensitivity**: Probability that a test result will be positive when the disease is present (true positive rate).

- **Specificity**: Probability that a test result will be negative when the disease is not present (true negative rate).

- **Positive likelihood ratio**: Ratio between the probability of a positive test result given the presence of the disease and the probability of a positive test result given the absence of the disease.

- **Negative likelihood ratio**: Ratio between the probability of a negative test result given the presence of the disease and the probability of a negative test result given the absence of the disease.

- **Positive predictive value**: Probability that the disease is present when the test is positive.

- **Negative predictive value**: Probability that the disease is not present when the test is negative.
Fig. S1

Captopril

Saline

Diagnosis

Aldosterone (ng/dl)

p<0.0001

PH APA IHA

p<0.0001

PH APA IHA

p<0.0001

p<0.0001

PH APA IHA

p<0.0001

PH APA IHA

p<0.0001

NS

Fig. S1
Captopril

Na⁺ intake above Median

Sensitivity

AUC=0.847±0.055
p<0.0001 vs AUC=0.5

A=13.4 ng/dL

Na⁺ intake below Median

Sensitivity

AUC=0.691±0.064
p<0.0026 vs AUC=0.5

A=15.9 ng/dL

Saline

Sensitivity

AUC=0.856±0.054
p<0.0001 vs AUC=0.5

A=11.3 ng/dL

AUC=0.849±0.051
p<0.0001 vs AUC=0.5

A=6.61 ng/dL

Fig. S2