Increased Blood Pressure Variability in Aging Rats After Intrauterine Growth Restriction

To the Editor:

To determine which aspect of blood pressure is associated with the most end-organ damage, several parameters are used like average blood pressure, pulse pressure, and blood pressure variability. In a recent article, Tatasciore et al\(^1\) showed that blood pressure variability is more closely associated with cardiovascular damage than mean blood pressure levels.

An increased blood pressure and a higher incidence of cardiovascular diseases are frequently described after intrauterine growth restriction (IUGR).\(^2\) It has also been shown that blood pressure variability is highest in children with the lowest birth weights.\(^3\) However, data during aging on blood pressure variability after IUGR are lacking.

We have shown previously that IUGR in a rat model of uteroplacental dysfunction based on uterine artery ligation leads to an increase in blood pressure and pulse pressure in aging rats.\(^4\) We used telemetry to acquire these longitudinal data, because this allowed for measurements in conscious and freely moving animals. To address the issue of aging and blood pressure variability after IUGR, we restudied our data on the nighttime blood pressure and heart rate in this previously described group of male animals at the ages of 6 and 12 months.\(^5\) It has been shown previously in rats, as well, that blood pressure variability is a more critical determinant of cardiovascular damage rather than the blood pressure levels.\(^6\) The variability in blood pressure and heart rate was defined as the SD of the respective parameter during the 12-hour period of measurement, during which 1 value was stored every 6 minutes. To use unstressed, ie, undisturbed by humans, and awake data in the nocturnal rat, we used nighttime data only.

The Table shows the data on the cardiovascular variability at the 2 ages studied and demonstrates that diastolic and systolic blood pressure variability are highly significantly increased in 12-month-old IUGR animals (mean difference in diastolic blood pressure variability: 1.41 mm Hg; 95% CI: 0.88 to 1.94 mm Hg; mean difference in systolic blood pressure variability: 1.69 mm Hg; 95% CI: 1.12 to 2.25 mm Hg). Linear regression between birth weight and diastolic and systolic blood pressure variability showed highly significant negative associations at the age of 12 months ($r = -0.59$ and $P = 0.005$ and $r = -0.59$ and $P = 0.005$ for diastolic and systolic blood pressure variability, respectively).

We conclude that IUGR increases blood pressure variability in aging animals, which may, in part, explain the higher prevalence in end-organ damage and cardiovascular disease that is associated with IUGR. It may, therefore, be of interest to study blood pressure variability in adult IUGR individuals.

None.

Disclosures

Michiel F. Schreuder
Department of Pediatric Nephrology
VU University Medical Center
Amsterdam, The Netherlands

and the Department of Pediatric Nephrology
Erasmus MC-Sophia Children’s Hospital
University Medical Center
Rotterdam, The Netherlands

Joanna A.E. van Wijk
Department of Pediatric Nephrology
VU University Medical Center
Amsterdam, The Netherlands

Henriette A. Delemarre-van de Waal
Department of Pediatric Endocrinology
VU University Medical Center
Amsterdam, The Netherlands

Table. Blood Pressure and Heart Rate Variability

<table>
<thead>
<tr>
<th>Age</th>
<th>Variable</th>
<th>Control Animals*</th>
<th>IUGR Animals</th>
<th>Pt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Heart rate variability, bpm</td>
<td>36.6 (7.4)</td>
<td>39.4 (7.4)</td>
<td>0.4</td>
</tr>
<tr>
<td>6 mo</td>
<td>Diastolic blood pressure variability, mm Hg</td>
<td>6.6 (0.8)</td>
<td>7.0 (0.6)</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>Systolic blood pressure variability, mm Hg</td>
<td>7.8 (0.9)</td>
<td>8.2 (0.8)</td>
<td>0.3</td>
</tr>
<tr>
<td>12 mo</td>
<td>Heart rate variability, bpm</td>
<td>44.9 (3.1)</td>
<td>45.1 (4.3)</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>Diastolic blood pressure variability, mm Hg</td>
<td>6.7 (0.5)</td>
<td>8.1 (0.6)</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td>Systolic blood pressure variability, mm Hg</td>
<td>8.0 (0.6)</td>
<td>9.7 (0.7)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

At the age of 6 months, data on 15 control and 11 IUGR animals were available; at the age of 12 months, data on 11 control and 10 IUGR animals were available. *Data are shown as mean (SD).

†P value was based on unpaired t test, control vs IUGR group.
Increased Blood Pressure Variability in Aging Rats After Intrauterine Growth Restriction
Michiel F. Schreuder, Joanna A.E. van Wijk and Henriette A. Delemarre-van de Waal

Hypertension. 2007;50:e158; originally published online September 17, 2007;
doi: 10.1161/HYPERTENSIONAHA.107.099994

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2007 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/50/5/e158

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/