Wine Polyphenols Improve Endothelial Function in Large Vessels of Female Spontaneously Hypertensive Rats

Rocío López-Sepúlveda, Rosario Jiménez, Miguel Romero, María José Zarzuelo, Manuel Sánchez, Manuel Gómez-Guzmán, Félix Vargas, Francisco O’Valle, Antonio Zarzuelo, Francisco Pérez-Vizcaíno, Juan Duarte

Abstract—Red wine polyphenols (RWPs) have been reported to prevent hypertension and endothelial dysfunction. Several individual RWPs exert estrogenic effects. We analyzed the possible in vivo protective effects on blood pressure and endothelial function of RWPs in female spontaneously hypertensive rats (SHR) and its relationship with ovarian function. RWPs (40 mg/kg by gavage) were orally administered for 5 weeks. Ovariectomized rats showed both increased isoprostaglandin F₂α excretion and aortic superoxide production and reduced relaxant response to acetylcholine and contraction to the endothelial nitric oxide synthase (eNOS) inhibitor l-NAME measured in the aorta but similar blood pressure, as compared with sham-operated rats. Moreover, in ovariectomized rats aortic eNOS expression was unchanged, whereas caveolin-1, angiotensin II receptor (AT)-1, and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22phox and p47phox expression was increased compared with sham-operated rats. In both ovariectomized and sham-operated SHR, RWPs reduced systolic blood pressure, urinary isoprostaglandin F₂α excretion, and aortic O₂⁻ production, improving the endothelium-dependent relaxant response to acetylcholine in SHR. These changes were associated with unchanged aortic eNOS expression, whereas caveolin-1 was increased and the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase subunits p22phox and p47phox expression was reduced. RWPs had no effect on the AT-1 overexpression found in ovariectomized animals. All these results suggest that a chronic treatment with RWPs reduces hypertension and vascular dysfunction through reduction in vascular oxidative stress in female SHR in a manner independent of the ovarian function. (Hypertension. 2008;51:1088-1095.)

Key Words: red wine polyphenols ■ spontaneously hypertensive rat ■ endothelial dysfunction ■ NADPH oxidase ■ ovariectomy

The incidence of cardiovascular diseases among premenopausal women is lower than age-matched, men but it rises markedly after menopause. Blood pressure is also higher in men than in women at similar ages,¹ and this difference is also reduced or even inverted after menopause. The loss of estrogens has been suggested as a major risk factor for postmenopausal hypertension. Estrogen receptor (ER) subtypes ERα and ERβ are expressed in endothelial and smooth muscle cells.²⁻⁵ Estrogens increase endothelial-derived NO, modulate the local tissue renin-angiotensin system, and show antioxidant effects.⁶⁻¹⁰ Long-term estrogen treatment improves endothelial dysfunction, through upregulation of endothelial nitric oxide synthase (eNOS),¹¹,¹² posttranslational modulation of eNOS activity,¹³ or nongenomic effects, including activation of NO synthesis.¹⁴,¹⁵ However, despite the positive effects on vascular function found in cell culture,¹²,¹⁴ ex vivo¹⁵ and in vivo animal¹⁶⁻¹⁸ and short-term human⁷,¹⁹⁻²¹ studies, estrogen replacement therapy has failed to protect from cardiovascular diseases in large scale randomized controlled trials.²²,²³

Several classes of polyphenolic compounds which are consumed within our regular diet structurally and functionally resemble the mammalian estrogens and, thus, have been generally termed “phytoestrogens.” These dietary compounds appear to provide protection from cardiovascular diseases.²⁴ Previous works in our laboratory²⁵ and others²⁶,²⁷ demonstrated that soy phytoestrogens can protect estrogen-depleted spontaneously hypertensive rats (SHR). Red wine polyphenols (RWPs) and a grape skin extract also reduced blood pressure in males in several models of experimental hypertension,²⁸⁻³² which was related to a combination of vasodilator and antioxidant actions. In vitro, several components of RWPs bind and increase the transcriptional activity of ERα
and ERβ.33–35 However, there are not studies which analyze the possible in vivo protective effects on blood pressure and endothelial function of RWPs in females and its relationship with ovarian function.

We have investigated whether RWPs exerted an in vivo protection against the decline in vascular function in an experimental model of endothelial dysfunction induced by both blood pressure increase and ovaricetomy in female rats. It was hypothesized that RWPs would alter vascular reactivity involving changes in eNOS expression and its regulatory proteins (caveolin) and/or changes in oxidative status in isolated thoracic aortas.

Methods

Animals and Experimental Groups
Experiments followed our Institutional Guidelines for the ethical care of animals. Female SHR aged 24 weeks (Harlan Laboratories, Barcelona, Spain) were maintained (5 per cage, 24±1°C, 12-hour dark/light cycle) on soy-free chow (AIN 76, American Institute of Nutrition). SHR is an inbred rat strain derived from Wistar rats which is genetically predisposed to develop hypertension spontaneously resembling human essential hypertension. Rats were ovariec-tomized (OVX) or sham-operated under anesthesia (2.5 mL/kg equitensin IP; 500 mL contain 43% wt/vol chloral hydrate in 81 mL ethanol; 4.86 mg nembutal; 198 mL propylene glycol; 10.63 g MgSO4; distilled water). Three weeks after surgery animals were divided into the following groups (n=6 to 9 in each group): Sham-placebo, OVX-placebo, Sham-RWPs (40 mg/kg, per day, by gavage), and OVX-RWPs and followed for 5 weeks. Placebo was 1 mL of tap water daily by gavage. RWPs treatment was stopped 2 days before the end of experiments, to study their long-term effects without the involvement of acute administration effects. All rats of each group were then housed in metabolic cages with free access to food and their respective drinking fluids to measure urine output during 24-hours.

Blood Pressure Measurements
Systolic blood pressure (SBP) was measured weekly 18 to 20 hours after administration of the drugs in conscious, prewarmed, restrained rats by tail-cuff plethysmography.32

Cardiac and Renal Weight Indices
At the end of the experimental period, animals were anesthetized with 2.5 mL/kg equitensin (IP), and blood was collected from the abdominal aorta. Animals were euthanized and kidneys and hearts excised, cleaned, and weighed. The atra and the right ventricle were then removed and the remaining left ventricle weighed. The cardiac, left ventricular, and renal weight indices were calculated by dividing the heart, left ventricle, and kidney weight by the body weight.

Urinary Determinations
For total 8-iso-prostaglandin (PG) (iso-PG)F2α determination, 50 μL of urine was used for assay. The total iso-PGF2α concentration was measured by competitive enzyme immunnoassay kit (Cayman Chemical), and the results were expressed as nanograms excreted during 24 hour per 100 g of body weight.

Vascular Reactivity Studies
Descending thoracic aortic rings (3 mm) were dissected and mounted in organ chambers filled with Krebs solution (composition in mmol/L: NaCl 118, KCl 4.75, NaHCO3 25, MgSO4 1.2, CaCl2 2, KH2PO4 1.2, and glucose 11) at 37°C and gassed with 95% O2 and 5% CO2. Rings were stretched to 2 g of resting tension by means of 2 L-shaped stainless-steel wires inserted into the lumen and attached to the chamber and to an isometric force-displacement transducer (Letigraph 2000), respectively, as previously described.32 The concentration-relaxation response curves to acetylcholine (ACH) (10−6 mol/L to 10−4 mol/L) were performed in rings pre-contrasted by 10−5 mol/L phenylephrine. The concentration-relaxation response curves to nitroprusside (10−7 mol/L to 10−4 mol/L) were performed in the dark in rings pre-contrasted by 10−5 mol/L phenylephrine. In some rings without endothelium, a concentration-response curve to angiotensin II (10−8 mol/L to 10−5 mol/L) was carried out by cumulative addition of the drugs. To evaluate the formation of basal NO, the contraction induced phenylephrine (10−5 mol/L to 10−6 mol/L) was measured 30 minutes after aortic incubation with the NOS inhibitor Nω-nitro-l-arginine methyl ester (L-NAME, 10−4 mol/L).25,32

In Situ Detection of Vascular Superoxide Anion (O2−) Production
Unfixed thoracic aortic rings were cryopreserved (PBS 0.1 mol/L, plus 30% sucrose for 1 to 2 hours), included in OCT, frozen (−80°C), and 10 μm cross sections were obtained in a cryostat (Microm International Model HM500 OM). Sections were incubated for 30 minutes in Hepes buffered solution containing dihydroethidium (DHE, 10−5 mol/L), counterstained with the nuclear stain DAPI, and in the following 24 hours examined on a fluorescence microscope (Leica DM IRB). Sections were photographed and ethidium and DAPI fluorescence were quantified using ImageJ (version 1.32j). NIH, http://rsb.info.nih/ij/). O2− production was estimated from the ratio of ethidium/DAPI fluorescence.25 In preliminary experiments, DHE fluorescence was almost abolished by the O2− scavenger tiron, indicating the specificity of this reaction.

Western Blotting Analysis
Aortic homogenates were run on a sodium dodecyl sulfate (SDS)-polyacrilamide electrophoresis. Proteins were transferred to polyvi-nylidine difluoride membranes (PVDF), incubated with primary monoclonal mouse anti-eNOS or anti–caveolin-1 antibodies (Transduction Laboratories) polyclonal goat anti-p22phox, polyclonal rabbit anti-p47phox or rabbit anti-AT-1 receptor (SantaCruz Biotechnology) overnight and with the correspondent secondary peroxidase conjugated antibodies. Antibody binding was detected by an ECL system (Amersham Pharmacia Biotech) and densitometric analysis was performed using Scion Image-Release Beta 4.02 software (http://www.scioncorp.com).28 Samples were reprobed for expression of smooth muscle α-actin.

Reverse Transcriptase-Polymerase Chain Reaction Analysis
For reverse transcriptase-polymerase chain reaction (RT-PCR) analysis, total RNA was extracted from aorta by homogenization and converted to cDNA by standard methods. PCR was performed with a Techne Techgene thermocycler (Techne). Initial denaturation was done at 95°C for 3 minutes and followed by 28 to 40 (30 for caveolin-1, p22phox and eNOS, 32 for AT-1 and 40 for p47phox) cycles of amplification. Each cycle consisted of 1 minute of denaturation at 94°C, 45 s of annealing at 60°C for p47phox, 55°C for p22phox, 55°C for caveolin-1, 77°C for AT-1, or 63°C for eNOS, and 1 minute for enzymatic primer extension at 72°C. After the final cycle, the temperature was held at 72°C for 10 minutes to allow reannealing of amplified products. RT-PCR products were then size-fractionated through a 1.5% agarose gel, and the bands were visualized with ethidium bromide and quantified by densitometric analysis performed on the scanned images using Scion Image-Release Beta 4.02 software (http://www.scioncorp.com). The sequences for primers for p47phox and p22phox were selected according to the published se-quences in GenBank and were as follows: p47phox (101 base pairs) sense, 5′-GCCAGCGACAGTTAGGAAGC-3′ and antisense, 5′-TGGATTTCCCTTGAGTCAGG-3′; p22phox (200 base pairs) sense, 5′-GCCGGTTGGACAGAATACTCC-3′ and antisense, 5′-CITGGTGTAGGCTCAATG-3′. The sequences for primers for caveolin-1, AT-1, and eNOS were as follows: caveolin-1 (304 base
Long-term RWP administration induced a progressive reduction in SBP (9% at the end of the 5 weeks, *P<0.01, ###P<0.001, RWP compared with the respective placebo group.

Statistical Analysis

Results are expressed as mean±SEM of 6 to 9 rats. Statistical analysis was performed by a 1-way ANOVA followed by a Newman Keuls test. *P<0.05 as compared to the sham group.

Blood Pressure, Morphological Variables, and Urinary Isoprostanate Excretion

SBP did not differ between OVX and sham-operated SHR. Long-term RWP administration induced a progressive reduction in SBP (~9% at the end of the 5 weeks, *P<0.01 versus untreated SHR) which was similar in control and OVX rats (Figure 1).

Ex Vivo Aortic Reactivity

ACh induced a relaxant response that was abolished by endothelium removal as described elsewhere. Depletion of most of the endogenous estrogen (via ovariectomy) and exogenous estrogens (dietary soy phytoestrogens, via diet AIN 76) impaired relaxation evoked by ACh as compared with sham-operated rats (Figure 3A, pD2 are shown in Table 1, please see http://hyper.ahajournals.org). Treatment with RWPs in both groups of rats (Table). Uterus weight, a long-term parameter of ERα activation, was lower in OVX placebo-treated compared with sham-operated rats, and not affected by treatment with RWPs. Ovariectomy also led to a decreased relative kidney weight compared with sham-operated rats, and this was not prevented by RWPs. Absolute left ventricle weight (LVW) and LVW relative to heart weight (HW), an index for left ventricular hypertrophy, were similar in all 4 groups of SHR animals. Thus, changes in LVW relative to BW (Table) appear to reflect changes in body mass rather than true changes in ventricular hypertrophy.

The 24-hour urinary iso-PGF2α excretion, a specific marker of systemic O2− production, was increased in OVX rats as compared with sham-operated SHR (Figure 2). In both groups of rats, RWP treatments decreased significantly urinary isoprostane excretion.

Table. Body and Organ Weights and Cardiac and Renal Indices

<table>
<thead>
<tr>
<th>Groups</th>
<th>BW, g</th>
<th>HW, mg</th>
<th>LW, mg</th>
<th>KW, mg</th>
<th>LW/HW Ratio</th>
<th>LW/BW Ratio</th>
<th>KW/BW Ratio</th>
<th>UW, mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sham-placebo</td>
<td>205±3</td>
<td>883±13</td>
<td>688±7</td>
<td>614±12</td>
<td>0.78±0.01</td>
<td>3.37±0.06</td>
<td>3.00±0.07</td>
<td>598±43</td>
</tr>
<tr>
<td>Sham-RWPs</td>
<td>204±6</td>
<td>854±21</td>
<td>670±19</td>
<td>594±14</td>
<td>0.78±0.01</td>
<td>3.29±0.05</td>
<td>2.92±0.06</td>
<td>627±57</td>
</tr>
<tr>
<td>OVX-placebo</td>
<td>245±10†</td>
<td>929±43</td>
<td>735±29</td>
<td>677±25*</td>
<td>0.79±0.01</td>
<td>3.00±0.11†</td>
<td>2.75±0.07*</td>
<td>176±11*</td>
</tr>
<tr>
<td>OVX-RWPs</td>
<td>239±3†</td>
<td>890±24</td>
<td>697±17</td>
<td>625±16</td>
<td>0.78±0.02</td>
<td>2.91±0.09†</td>
<td>2.61±0.05†</td>
<td>208±25*</td>
</tr>
</tbody>
</table>

SBP indicates systolic blood pressure; BW, body weight; HW, heart weight; LW, left ventricle weight; KW, kidney weight; UW, uterus weight. Values are expressed as mean±SEM of 6 to 9 rats.

*P<0.05, †P<0.01 as compared to the sham group.
by ACh in all experimental groups was abolished by L-NAME (10⁻⁴ mol/L; not shown). The endothelium-independent relaxation induced by sodium nitroprusside was not different among groups (Figure 3B; Table S1).

No differences were found among all experimental groups in the concentration-contractile response induced by phenylephrine in intact aortic rings (Figure 4A; Table S1). However, this response was significantly reduced in aorta from OVX as compared with sham-operated animals (Figure 4B; Table S1) when the rings were incubated previously with the NO synthase inhibitor L-NAME, indicating a reduced basal NO formation in OVX SHR. RWP increased this contractile response only in rings from OVX rats, suggesting a higher NO formation in these vessels.

In Situ Detection of $O_2^·$ Production in Rat Aorta
To characterize and localize $O_2^·$ production within the vascular wall, ethidium red fluorescence was analyzed in sections of aorta incubated with DHE. DHE is oxidized by $O_2^·$ to yield ethidium which stains DNA. Positive red nuclei could be observed in adventitial, medial, and endothelial cells (Figure 5A). Nuclear red ethidium fluorescence, indicative of $O_2^·$ production, was quantified and normalized to the blue fluorescence of the nuclear stain DAPI, allowing comparisons between different sections. Rings from OVX SHR showed marked increased staining in adventitial, medial, and endothelial cells as compared with sham-operated rats which was significantly reduced by RWPs in both sham and OVX groups (Figure 5A and 5B).

Gene and Protein Expression of eNOS, Caveolin-1, p47^{phox}, p22^{phox}, and AT-1 Receptor in Rat Aorta
eNOS gene and protein expression was unchanged in ovariectomized rats as compared with sham-operated rats (Figure 6A and 6B). We next examined changes in expression of caveolin-1, an allosteric negative regulator of eNOS. The expression of caveolin-1 was markedly higher in aortae from OVX SHR than sham-operated rats (Figure 6C and 6D). After treatment of animals with RWPs for 5 weeks, eNOS gene and protein expression was unchanged (Figure 6A and 6B), whereas caveolin-1 was increased (Figure 6C and 6D) in both control and OVX rats.

Significant mRNA and protein overexpression of NADPH oxidase subunits, p22^{phox} and p47^{phox}, were observed in aortic tissue from OVX SHR as compared with sham rats. RWP treatment was able to reduce gene and protein expression of both subunits in SHR independently of ovarian function (Figure 7).

Both AT-1 mRNA and AT-1 protein expression were increased in aorta from OVX rats as compared with sham-operated rats (Figure 8). Treatment with RWPs in Sham or OVX rats did not modify AT-1 gene and protein expression. Moreover, the contractions induced by angiotensin II, which were greater in OVX than in sham-operated rats, were also unmodified by chronic RWPs treatment (Figure 8C; Table S1).

Discussion
The major new findings of this study are that chronic treatment with RWPs reduced SBP, systemic oxidative stress, and the endothelial dysfunction in female SHR, and that this effect seems to be independent to ovarian function and related to attenuation of vascular $O_2^·$ production mediated by NADPH oxidase inhibition.

This study confirms and extends previous evidence about antihypertensive effects and the improvement in endothelial function of RWPs in male hypertensive rats. According to previous studies we also found that the antihypertensive effects of RWPs seem to be related to attenuation of oxidative stress, because the urinary iso-PGF₂α, a PG-like compound produced in a nonenzymatic reaction of arachidonic acid and $O_2^·$, was significantly reduced by RWPs in both sham and OVX rats.

The most characteristic feature of endothelial dysfunction is a diminished bioactivity of endothelium-derived...
NO. In the rat aorta, endothelium-dependent vasodilatation relies almost entirely on the endothelial release of NO. The SHR is a well-known and widely used animal model of endothelial dysfunction which aggravates after ovariectomy, resembling that observed in postmenopausal hypertensive women. More specifically, OVX SHR showed a reduced relaxant response to ACh, an endothelium- and NO-dependent vasodilator, and unchanged response to nitroprusside, an NO donor that relaxed arteries in an endothelium-independent manner. In addition, endothelium-intact aortic rings from OVX rats showed a reduced contraction to phenylephrine in presence of L-NAME, an inhibitor of eNOS, as compared with sham-rats. Taken together, these data indicate that OVX rats show endothelial dysfunction characterized by a reduced NO bioactivity. RWPs were able to improve the endothelium-dependent vasodilator response to ACh in both sham- and OVX-SHR without affecting the response to nitroprusside, and restored the contraction evoked by L-NAME in OVX rats. These data strongly suggest that RWPs improve endothelial function in SHR by increasing NO bioactivity.

Several potential mechanisms would be involved in the RWP-induced increase of endothelial-derived NO responses, such as changes in the activity or expression of eNOS, changes in the vascular levels of O$_2^•$ and thus O$_2^•$-driven NO inactivation, and changes in the sensitivity to NO-cGMP.
pathway in vascular smooth muscle cells. Because the responses to nitroprusside were not modified by RWPs, the third potential mechanism can be ruled out. Reduced NO synthesis associated to endothelial dysfunction may be caused by impaired expression of eNOS, posttranslational modification of the enzyme (eg, phosphorylation or fatty acid modifications), interactions with heat shock protein 90 (hsp90) and caveolin, or suboptimal concentrations of the substrate L-arginine or the cofactor tetrahydrobipterin (BH4). In agreement with our previous study, we found that mRNA and protein expression of eNOS in aorta from SHR was not altered by OVX. Cell stimulation with Ca2⁺-mobilizing agonists promotes calmodulin binding to eNOS and caveolin dissociation from the enzyme, rendering the eNOS modulator are consistent with the widely observed caveolin-1. Therefore, these changes in the expression of this AT-1 receptor is the most important source of O₂⁻ in the vessel wall. Estrogen deficiency led to an increased NADPH oxidase activity, associated with increased vascular expression of p22(phox) and p67(phox) subunits in the aorta of OVX mice, and supplementation of estrogen prevented this effect. In our experimental conditions, we also found in OVX rats an increased O₂⁻ production, associated with increased p22(phox) and p47(phox) expression in the vascular wall. RWPs reduced the expression of these subunits in both sham-operated and estrogen-depleted SHR.

AT-1 receptor activation induces vasoconstriction and cellular growth and leads to free radical release in the vessel wall. It has been reported that estrogen causes downregulation of vascular AT-1 receptors and that estrogen deficiency is accompanied by AT-1 receptor overexpression. In ovariectomized SHR, we also found an increased AT-1 receptor expression at the level of mRNA and protein and a clear functional correlate, ie, parallel changes in angiotensin II–induced vasoconstriction. The increased AT-1 receptor expression in OVX may also contribute to the increase in O₂⁻ reduction in O₂⁻ production and the impaired endothelial function. However, RWPs did not change AT-1 overexpression nor the vasoconstriction induced by angiotensin II in OVX rats. Therefore, the improvement of endothelial function and the reduction in O₂⁻ production induced by RWPs is independent of AT-1 receptor expression regulation.

In conclusion, our results clearly demonstrated that RWP treatment reduces the elevated blood pressure, the endothelial dysfunction, and the vascular oxidative stress in this model of genetic hypertension. These effects seem to be independent of ovarian function and related to the increased NO bioactivity, resulting from reduced NADPH-oxidase mediated O₂⁻ production.

Perspectives

Our present results in female rats confirm and extend previous data showing antihypertensive and vasoprotective effects of RWPs in male animals. Moreover, the relevance of NADPH oxidase system as a potential target for controlling hypertension and endothelial dysfunction is also enhanced. However, the exact mechanism involved in the NADPH oxidase subunits downregulation induced by RWPs continues unclarified. The present findings may help to explain the potential benefits of RWPs as a therapeutic agent for preventing the menopausal vascular complications, especially in hypertensive women.
Acknowledgments

R. López-Sepúlveda and M. Romero are the holder of a studentship from Spanish Ministry of Science and Education. R. Jiménez is a recipient of a “Retorno de Doctores” Program contract, from Junta de Andalucía (Spain).

Sources of Funding

This work was supported by Grants from Comisión Interministerial de Ciencia y Tecnología AGL2004-06685-ALI (Acción Movilizadora de Alimentos Funcionales), from Junta de Andalucía, Proyecto de Excelencia (P06-CTS-01555) and by the Ministerio de Sanidad y Consumo, Instituto de Salud Carlos III (Red HERACLES RD06/0009), Spain.

Disclosures

None.

References

Wine Polyphenols Improve Endothelial Function in Large Vessels of Female Spontaneously Hypertensive Rats
Rocío López-Sepúlveda, Rosario Jiménez, Miguel Romero, María José Zarzuelo, Manuel Sánchez, Manuel Gómez-Guzmán, Félix Vargas, Francisco O’Valle, Antonio Zarzuelo, Francisco Pérez-Vizcaíno and Juan Duarte

Hypertension. 2008;51:1088-1095; originally published online February 7, 2008; doi: 10.1161/HYPERTENSIONAHA.107.107672
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/51/4/1088

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2008/01/24/HYPERTENSIONAHA.107.107672.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Data Supplement

Wine Polyphenols Improve Endothelial Function In Large Vessels Of Female Spontaneously Hypertensive Rats

Rocio López-Sepúlveda, Rosario Jiménez, Miguel Romero, Maria José Zarzuelo, Manuel Sánchez, Manuel Gómez-Guzmán, Félix Vargas, Francisco O’Valle, Antonio Zarzuelo, Francisco Pérez-Vizcaíno, Juan Duarte*

aDepartment of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada (A. Z. is from CIBEREHD). b Department of Physiology, School of Medicine, University of Granada. c Department of Pathological Anatomy, School of Medicine, University of Granada. d Department of Pharmacology, School of Medicine, University Complutense of Madrid, CIBERES, Spain.

*Corresponding author: Juan Duarte. Department of Pharmacology, School of Pharmacy, University of Granada, 18071 Granada, Spain. Tel: (34)-958244088, Fax: (34)-958248264, Email: jmduarte@ugr.es

Running title: Polyphenols and female SHR.
Table S1. Parameters of the concentration-response curves to vasoactive factors

<table>
<thead>
<tr>
<th>Drugs</th>
<th>Sham-placebo (n=9)</th>
<th>Sham-RWP (n=9)</th>
<th>OVX-placebo (n=6)</th>
<th>OVX-RWP (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pD₂</td>
<td>Eₘₐₓ</td>
<td>pD₂</td>
<td>Eₘₐₓ</td>
</tr>
<tr>
<td>Acetylcholine (10⁻⁹ - 10⁻⁴ mol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.58 ± 0.21</td>
<td>35.0 ± 2.6</td>
<td>7.29 ± 0.15</td>
<td>46.1 ± 4.6 †</td>
</tr>
<tr>
<td>Sodium nitroprusside (10⁻⁹ - 10⁻⁴ mol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.43 ± 0.11</td>
<td>93.6 ± 3.6</td>
<td>7.72 ± 0.11</td>
<td>95.9 ± 2.4</td>
</tr>
<tr>
<td>Phenylephrine (without L-NAME) (10⁻⁹ - 10⁻⁶ mol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.13 ± 0.05</td>
<td>1.4 ± 0.1</td>
<td>7.15 ± 0.13</td>
<td>1.5 ± 0.3</td>
</tr>
<tr>
<td>Phenylephrine (with L-NAME) (10⁻⁹ - 10⁻⁶ mol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.59 ± 0.11</td>
<td>2.3 ± 0.1</td>
<td>7.51 ± 0.10</td>
<td>2.3 ± 0.3</td>
</tr>
<tr>
<td>Angiotensin II (10⁻¹₀ - 10⁻⁵ mol/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8.96 ± 0.33</td>
<td>0.12 ± 0.04</td>
<td>9.04 ± 0.19</td>
<td>0.17 ± 0.03</td>
</tr>
</tbody>
</table>

Values are means ± s.e. mean. Eₘₐₓ (maximal effect) for phenylephrine and angiotensin II are expressed as g of contraction/mg tissue and for acetylcholine and sodium nitroprusside as a percentage of relaxation of the pre-contraction with phenylephrine. pD₂ is the drug concentration exhibiting 50% of the Emax expressed as negative log molar. *P<0.05 as compared to the sham-placebo group. †P<0.05 RWPs as compared to the respective placebo group.