Dietary Therapy for Obesity: An Emperor With No Clothes

Allyn L. Mark

The prevalence of obesity has increased substantially in the past 3 decades and is projected to increase further in the years ahead. It increases the risk of diabetes mellitus, dyslipidemia, hypertension, cardiovascular disease, sleep apnea, nonalcoholic hepatic steatosis, gallbladder disease, osteoarthritis, and cancer. The prevention and treatment of obesity is, therefore, a leading challenge facing public health and medicine in the 21st century.

Two stereotypes have dominated thinking in public health, medicine, and the media about obesity. The first stereotype is that the recent surge in prevalence of obesity reflects almost entirely environmental and psychological factors and excludes an important contribution of genetic biological factors. The second stereotype is that obesity should and can be treated primarily by diet and behavioral modification. In this review, I challenge these tenets.

I summarize evidence for a strong genetic neurobiological contribution to adiposity and body weight and assert that common human obesity is, like essential hypertension, a complex multifactorial disease where genetic factors promote sensitivity or resistance to obesity in a toxic environment. This concept of a genetic resistance versus sensitivity to obesity helps explain why many people remain thin in a toxic environment whereas others develop profound obesity.

I then discuss evidence that dietary therapy for obesity generally fails to achieve weight loss maintenance. There is mounting indication that the high rate of relapse from weight loss during dietary therapy occurs because of compensatory biological adaptations that promote lack of compliance and effectiveness. Relapse from weight loss during dietary therapy is not caused simply by lack of discipline and will power.

Finally, I briefly discuss the alternatives to dietary and behavioral therapy, namely bariatric surgery and pharmacotherapy.

As a prelude to my critique of dietary therapy, I begin with a discussion of the role of genetic neurobiological factors in obesity.

Contributors to the Increase in Obesity: The Role of Genetic Neurobiological Factors

The surge in the prevalence of obesity in recent decades, during a time when the gene pool has not changed, has led to the view that environmental changes are the overwhelming contributors to the so-called obesity epidemic. The “Big Two” environmental factors, are said to be: (1) Unending overnutrition related to ubiquitous abundance of low cost/high calorie foods and (2) increasingly sedentary occupations and immobilizing technologies including computers, automobiles, television, and elevators that decrease caloric expenditure.1

The emphasis on a “toxic environment” in the obesity epidemic has overshadowed evidence for a strong genetic neurobiological contribution to adiposity and body mass in humans. Evidence is mounting that these two factors—a toxic environment and genetic influences—are not mutually exclusive contributors to obesity. Instead, genetic factors can promote either sensitivity or resistance to obesity in a toxic environment.

The Discovery of Leptin and the Revolution in the Genetic Neurobiological Regulation of Appetite and Metabolism

The pioneering discovery of leptin in 1994 by Jeffrey Friedman and colleagues revolutionized understanding of neurobiological regulation of appetite and metabolism.2 In 1973, Coleman conducted studies using parabiosis of obese (ob/ob) mice with diabetes (db/db) or wild-type (+/++) mice.3 He concluded that the ob/ob mice are unable to produce a satiety factor to regulate their food consumption whereas the db/db mice produce a satiety factor, but cannot respond to it. This study remained mysterious for 21 years until Friedman and colleagues discovered the ob/ob mice which produce more food intake and severe obesity have leptin deficiency from mutations in the leptin gene.3 Shortly thereafter, it was discovered that db/db mice which also display increased food intake and severe obesity have leptin resistance from...
mutations in the leptin receptor.4 Leptin decreases food intake and adiposity and increases energy expenditure in the ob/ob but not the db/db mice.5 These seminal discoveries demonstrated dramatically that appetite and metabolism are tightly controlled by genetic neuroendocrine factors and that adipose tissue is “alive” and acts as an endocrine organ regulating appetite, metabolism, and adiposity. Since then, there has been mushrooming evidence for new genetic neurobiological pathways regulating appetite, metabolism, and adiposity. This evidence has derived largely from studies of mutant or genetically engineered mouse models, but there have also been impressive discoveries in humans.

Monogenic Human Obesity

There are rare or infrequent Mendelian human counterparts of both the ob/ob mice with mutations in the leptin gene and leptin deficiency6 and the db/db mice with mutations in the leptin receptor and profound leptin resistance.7 Humans with these mutations have voracious appetite, profound early childhood obesity, and other phenotypic abnormalities.6–9 In the children with leptin deficiency, treatment with leptin rapidly and dramatically reduces food intake and leads to normal body weight.9

A number of other genes have been linked to severe human obesity.10–12 Pathogenetic mutations in the melanocortin-4 receptor gene have been identified in 5% of children with severe early onset obesity,10 and 3% of children with severe early onset obesity have mutations in the leptin receptor.8 Thus, monogenic forms of human obesity may represent more than 8% of children with early severe obesity, but it is virtually certain that most human obesity is not monogenic. Instead, as with human essential hypertension, most human obesity is a complex multifactorial polygenic disease involving the interaction of susceptibility genes/alleles and environmental stress.

Adoption and Twin Studies

Studies of adopted children and twins support a contribution of genetic factors to regulation of adiposity and body mass under physiological conditions. Stunkard et al13 demonstrated that the body mass index (BMI) of adopted children correlates with that of their biological parents (with whom they do not share a common environment) and not with that of their adopted parents (with whom they do share a common environment). In addition, studies of monozygotic twins14–15 reveal a high intrapair correlation in BMI with a lower intrapair correlation in dizygotic twins (Figure 1). There are other remarkable features of adiposity and body mass in monozygotic twins. The intrapair correlation in BMI pertains whether the twins are reared apart or together.16,17 The intrapair concordance persists over many years.15 With controlled overfeeding, there is intrapair concordance not only in weight gain but in the pattern of regional fat distribution.18 These studies demonstrate a strong genetic contribution to the regulation of adiposity and body mass in humans. Indeed, the estimates of hereditability of body mass are as high or higher than those for height and arterial pressure where a large genetic contribution is widely recognized. Body mass is a highly hereditable human trait.12

Body Mass in Twins

Monozygotic Twins (Intrapair Correlation = 0.66)

Dizygotic Twins (Intrapair Correlation = 0.26)

Figure 1. Photographs from Borjeson14 that portray the strong intrapair correlation in body mass in monozygotic or identical twins and a much lower intrapair correlation in dizygotic twins. The intrapair correlation in body mass in monozygotic twins pertains whether the twins are raised apart or together,16,17 and it persists over years15 and in response to controlled overfeeding.18 These twin studies indicate a strong genetic influence on body mass and adiposity in humans.

The Concept of Genetic Sensitivity Versus Resistance to Obesity in a Toxic Environment

Despite this evidence from adopted children and twins, many would still ask “how can genetic neurobiological factors contribute to the surge in common human obesity in recent decades since the gene pool has not changed during this time?” This question prompts a discussion of (1) susceptibility genes/alleles; (2) the concept of obesity sensitivity and resistance in animals and humans; and (3) the interaction of genetic and environmental factors in complex multifactorial diseases.

In the absence of environmental stress, susceptibility alleles (as opposed to disease-causing mutations) in genes will not produce a disease phenotype (Figure 2). It is only in the presence of a “toxic” environment that genetic susceptibility will be expressed as the disease phenotype, eg, hypertension or obesity (Figure 2). Thus, the finding that a disease such as obesity increases in frequency and severity in the presence of a “toxic” environment does not exclude an important contribution of genetic factors to the disease. The contribution of susceptibility genes/alleles to obesity has been shown in humans and experimental animals.

There are both rat and mouse models that display striking genetic sensitivity or resistance to obesity when fed high-fat diet. Two rat models merit emphasis—obesity prone and resistant Sprague-Dawley rats developed and characterized extensively by Levin et al19–21 and obesity prone and resistant Wistar rats developed by Hill et al22,23 and recently studied extensively by MacLean et al.24,25

In humans, both epidemiological and experimental studies support the concept that there are individuals with striking differences in sensitivity versus resistance to obesity. Morbid obesity is increasing at a much faster rate than moderate obesity in the United States.26 There has been a disproportionate increase in the number of severely obese people in
Recent years. In contrast, the BMI of adults in the lowest percentiles has not changed nearly as much as the BMI of those in the highest percentiles. These observations should be obvious to anyone who has walked the streets of the USA in the past 25 years. These epidemiological data strongly suggest that there are humans who are susceptible to obesity in a toxic environment and others who are relatively resistant.

There is also experimental evidence for the concept of obesity sensitivity and resistance in humans. In 16 nonobese young adults overfed by 1000 kcal per day for 8 weeks, Levine et al observed a 10-fold difference in weight gain ranging from 0.36 kg to 4.23 kg (Figure 3). In earlier studies of 12 pairs of identical twins, Bouchard et al observed that the variability in weight gain during controlled overfeeding was strongly influenced by genetic factors. Weight gain among the 24 individuals overfed by 1000 kcal per day for 12 weeks ranged from 4.3 to 13.3 kg. The strongest predictor of weight gain, particularly in visceral fat, with controlled overfeeding was the amount gained by the subject's identical twin. These studies indicate that the concept of sensitivity versus resistance to obesity in a toxic environment has a substantial genetic underpinning.

In summary, adoption and twin studies provide evidence for a substantial genetic contribution to body mass and adiposity in humans. Mendelian monogenic forms of early childhood obesity provide incontrovertible evidence for powerful genetic neurological influences on appetite and adiposity in humans. Finally, there are both epidemiological and experimental data supporting the concept of genetic susceptibility or resistance to diet-induced weight gain in humans. This concept of obesity sensitivity and resistance may explain why some individuals develop profound obesity in a toxic environment whereas others do not. As Bray has said: "genes load the gun and a permissive or toxic environment pulls the trigger."29

The Concept of Gestational and Perinatal Metabolic Imprinting of Offspring and Epigenetic Mechanisms in Obesity

In addition to susceptibility genes/alleles influencing sensitivity or resistance to obesity, there is evidence for a maternal gestational and perinatal "metabolic imprinting" of the offspring. In humans, this concept has emerged primarily from epidemiological studies, but it has received strong support from experimental studies in rodents. Maternal obesity and high-fat diet during gestation and lactation promote obesity and insulin resistance in offspring of rats.

A Notable Feature of This Metabolic Imprinting in Rats Is Its Relationship to the Genotype of the Mother

In rats selectively bred to be either genetically prone or resistant to the development of diet-induced obesity, maternal obesity during gestation leads to increased obesity (metabolic imprinting) only in the offspring of the mothers with a genetic predisposition to obesity. Thus, the interaction of genetic sensitivity and a toxic environment in the mother during gestation can stamp the offspring with a lifelong predisposition to obesity.

Epigenetic mechanisms, ie, hereditary changes in gene function/expression that occur without changes in DNA sequence, may be involved in metabolic imprinting. These epigenetic changes in gene expression may be triggered by environmental influences, such as maternal nutrition during gestation. The practical implication is that the resulting changes in gene function and susceptibility to obesity may persist throughout life in the offspring.

In summary, maternal obesity and high-fat diet during gestation and lactation can create a long-term sensitivity to obesity in the offspring. This metabolic imprint is apparently linked to an interaction between the mother's genetic predisposition to obesity and her metabolic environment during gestation and lactation. The gestational influences on long term susceptibility to obesity may be transmitted in part by...
A Critique of Dietary Therapy for Obesity

Mark A Critique of Dietary Therapy for Obesity

The mechanisms for relapse from weight loss are complex and multifactorial. This review focuses on two primary explanations for failure to maintain weight loss: psychological and biological factors. The psychological explanation is that obese people are psychologically unmotivated, implying a lack of discipline to prevent and treat obesity. In contrast, the biological explanation suggests that obese individuals have distinctive personality characteristics that predispose them to obesity. The article concludes that while voluntary efforts to reduce weight can be effective, sustained weight loss maintenance requires behavioral and psychological interventions.
Weight are resisted by potent compensatory biological responses. In obesity prone rats, MacLean et al demonstrated that weight-reduced obese rats manifested a persistent decrease in energy expenditure and an increased drive to eat. As a result, when food became available, the rats displayed an exceptionally high rate of weight regain. Food restriction and weight loss are accompanied by decreases in plasma leptin. These neurochemical changes stimulate food intake and minimize energy expenditure and, thereby, promote weight regain. As Levin has said, with food restriction and weight loss, "the drive to regain lies mainly in the brain." These and other studies in experimental animals provide a contemporary framework for understanding observations made 4 decades ago in obese humans during diet-induced weight loss. Hirsch and colleagues studied responses to diet-induced weight loss in obese humans in the 1960s. Hirsch later summarized his studies: "my colleagues and I found that patients in their obese state had no specific constellation of behavioral abnormalities or psychological aberrations. Nothing convincingly implicated any psychiatric or psychological disturbance as the cause of their obesity. After these same patients lost weight, however, they manifested many behavioral and physiological alterations. They developed a marked preoccupation with food and dieting, and their physical and mental activity generally slowed down. Subsequently, Leibel, Rosenbaum, and Hirsch demonstrated that weight loss and weight maintenance secondary to a decrease in caloric intake in humans are accompanied by a compensatory decrease in total energy expenditure. This mirrors the changes in energy expenditure in obese rats undergoing dietary restriction and weight loss. This decrease in energy expenditure would protect against starvation during famine, but in an environment prone to obesity it makes maintenance of weight loss difficult.

Dietary adherence declines dramatically within 4 to 12 months and is another major cause of relapse from weight loss during dieting. Despite claims to the contrary, this occurs with all diet programs including Atkins, Weight Watchers, and Ornish. Not surprisingly, this decrease in adherence has been attributed to a lack of will power and discipline and blamed on the patients. But there is now incontrovertible evidence for compensatory biological adaptations that increase appetite and undermine adherence to weight reducing diets. Food restriction and weight loss are accompanied by decreases in leptin. Leptin exerts a potent influence on appetite. Children with congenital leptin deficiency have aggressive food-seeking behavior. Before leptin treatment, a young child with leptin deficiency consumed in excess of 1100 calories at a single meal, which is approximately half the average daily intake of an adult. With only a few injections of leptin, this was reduced by 84% to 180 calories a day, the typical intake of a normal child. Ghrelin normally rises before meals and falls after every meal. It is increased during diet-induced weight loss, so that with weight-reducing diets, there is more ghrelin stimulating appetite. Thus, there is mounting evidence that appetite is a tightly regulated biological variable. With dieting and weight loss, there are homeostatic adaptations that stimulate appetite and decrease dietary adherence. Schwartz et al have reviewed evidence that the homeostatic control system of anabolic (NPY and agouti related peptide) and catabolic (proopiomelanocortin and cocaine-amphetamine-regulated transcript) neuronal pathways regulated by leptin are inherently more vigorous in defending against weight loss than against weight gain.

Figure 4. A schematic depiction of changes in leptin and neuropeptides during food restriction. These compensatory adaptations promote hunger and decrease metabolism. This undermines adherence to low calorie diets and promotes weight regain.

Figure 5. In the midst of famine, the biological adaptations to restricted food intake would protect against starvation and promote survival (A), but in contemporary environments with an abundance of food and increasingly sedentary lifestyles, these biological adaptations make it difficult to sustain weight loss during dietary therapy (B).
In addition, there are nonhomeostatic (reward, cognitive, emotional) cortico-limbic controls that promote ingestive behavior. In a world of plentiful food, this nonhomeostatic control system has assumed increasing importance in regulating ingestive behavior and may override satiety. As Berthoud reports, it is simplistic to believe that these nonhomeostatic mechanisms are purely cognitive and can be easily controlled by discipline or will power. These nonhomeostatic control pathways are under profound neurobiological control.

The Paradox of the Limitations and Dominance of Dietary Therapy

Many leaders in this field have commented on the high rate of relapse from adherence to dietary and behavioral treatment of obesity and its biological basis. In an era when we pride ourselves on practicing evidence-based medicine, why then does dietary and behavioral therapy still reign if it is “an emperor with no clothes”? I propose 4 reasons: (1) It is highly profitable for industry and academia; (2) It puts the responsibility for failure on the patient and not the physician; (3) We have not had effective and safe drug treatment for obesity; and (4) In the midst of an “epidemic”, public health officials and physicians are loathe to acknowledge that we do not have effective prevention.

If Not Dietary and Behavioral Therapy, Then What?

If dietary and behavioral therapy is as I suggest “an emperor with no clothes”, then what are the alternatives? It is not my purpose to provide an extensive review of bariatric surgery and drug therapy, but some comments seem necessary.

Bariatric Surgery

Bariatric surgery produces substantial and sustained weight loss in patients with morbid obesity. Other treatments do not. The Swedish Obesity Subjects (SOS) study is the largest prospective (albeit nonrandomized) trial of bariatric surgery. In 1703 patients followed for 10 years after surgery, there was considerable benefit in lifestyle, diabetes, and dyslipidemia. Dixon et al recently evaluated the effects of bariatric surgery (laparoscopic adjustable gastric banding or LAGB) on glycemic control and need for diabetes medications in 60 obese (BMI 30 to 40), type 2 diabetic patients randomized to either surgery or conventional diabetes, dietary and behavioral therapy. In patients followed for 2 years, the surgical group achieved greater weight loss, glycemic control, and remission of diabetes. One potential caveat of the general applicability of this study is that the magnitude of weight loss with LAGB (20.7% of body weight) was greater than that observed by other investigators.

Surprisingly perhaps, the beneficial effect of bariatric surgery on blood pressure is not as striking. Although a meta-analysis in 2004 concluded that hypertension resolved or improved in the majority of patients after bariatric surgery, I found it difficult to find the data supporting that conclusion. In addition, the data from the SOS study explicitly challenge the conclusion from the meta-analysis. In the SOS study, blood pressure decreased initially after bariatric surgery, but returned to control levels after 6 to 8 years despite persistent substantial decreases in body weight (Figure 6). In addition, although bariatric surgery was accompanied by persistent decreases in the incidence and severity of diabetes and dyslipidemia, the 8- to 10-year incidence of hypertension did not differ between the surgical and control groups. The absence of significant sustained decreases in blood pressure and hypertension despite sustained weight loss after bariatric surgery is perplexing. These data have received little attention.

There have been 2 recent reports that bariatric surgery reduces overall mortality in patients with BMI greater than 34. In the report from the SOS study, the Swedish Obesity Study showing a differential long-term effect of bariatric surgery on diabetes and hypertension. Blood pressure decreased initially after bariatric surgery, but returned to control levels after 6 to 8 years despite persistent substantial decreases in body weight (left). In addition, although bariatric surgery was accompanied by a persistent decrease in the incidence and severity of diabetes and dyslipidemia, the 8- to 10-year incidence of hypertension did not differ between the surgical and control groups (right).
First, neither of these studies was a controlled, randomized clinical trial.57,58 In neither study was there an attempt to match nonsurgical medical treatment in the surgical versus control groups. This is not a trivial or theoretical concern. In the Adams’ study,58 the only relevant information about the control group was their cause of death and their weight (self-reported), height, age, and gender when they applied for a driver’s license. It is highly likely that the surgical group received better medical follow-up and treatment than the control group. The same concerns apply to the control group in the SOS study.57 The SOS study included a prospective matched (but not randomized) control group of patients who elected not to have bariatric surgery. These patients received so-called conventional treatment. Here is the description of the conventional treatment. “Subjects in the control group received the customary nonsurgical treatment for obesity at their center of registration. No attempt was made to standardize the conventional treatment, which ranged from sophisticated lifestyle interventions and behavior modification to no treatment whatsoever.”57 In neither report was there evidence that cancer surveillance or management of diabetes and cardiovascular risk factors was as good in the control groups as in the surgical groups. All of these factors would introduce bias favoring survival in the patients who underwent bariatric surgery.

Second, in the SOS study,57 the cumulative mortality in the surgical and control groups did not diverge until 8 to 10 years after surgery. And in the report by Adams et al,58 the only notable reduction in mortality after gastric bypass was seen in patients with extreme morbid obesity (BMI greater than 45). Patients with BMI less than 45 did not have a notable mortality benefit even 15 years after surgery.

Despite reservations regarding effects of bariatric surgery on mortality, it is clearly the most effective therapy for morbid obesity. It is, however, legitimate to ask whether bariatric surgery will have widespread impact on the prevalence of obesity given challenges of patient acceptance, postoperative management, cost, and provider reimbursement.

Pharmacotherapy

We do not yet have effective, safe pharmacotherapy for common human obesity. Drug therapy for obesity has been relatively ineffective or complicated by troublesome side effects. This has led to the suggestion that obesity is different from other chronic multifactorial diseases such as hypertension and hypercholesterolemia and will not lend itself to safe effective pharmacotherapy.36 As a counterpoint, the history of antihypertensive and hypocholesterolemic therapy suggests that when we understand the biological mechanisms of a disease, effective treatment often follows. Once hypertension and hypercholesterolemia were recognized as risk factors, effective therapy emerged, but it took decades. Our understanding of the biology of obesity is very recent and still in a rapid growth phase. It should not prompt surprise or pessimism that safe effective pharmacotherapy has not yet emerged.

One question in treatment of obesity is potential effectiveness of monotherapy. Rosenbaum et al16 argued that redundancy and interactions within the systems regulating appetite and metabolism make it unlikely that pharmacological manipulation of a single system will lead to long-term resolution of obesity. At first glance, this seems persuasive, but one could have said the same thing about the treatment of hypertension 50 years ago. If ever there was a physiological variable regulated by redundant and interactive mechanisms, it is arterial pressure. Yet, we now have a number of effective monotherapies for hypertension. Beyond this, we have learned that multiple drugs are often needed for effective treatment of hypertension. There is no compelling reason why we should not be willing to consider combination drug therapy for obesity. There are promising recent developments in this regard.

Diet-induced obesity in rodents and common obesity in humans are accompanied by partial leptin resistance that limits therapeutic effectiveness of leptin. Amylin is a pancreatic hormone that is secreted with insulin.61 It inhibits appetite and promotes modest weight loss. It also increases leptin sensitivity. As a result, combination therapy with amylin and leptin acts synergistically to cause marked weight loss in diet-induced obese rats.62

Despite the magnitude of the problem and bariatric surgery notwithstanding, we simply do not have a solution to the problem of obesity. We will make more progress by acknowledging this than we will by pretending that dietary and behavioral therapy is effective.

Sources of Funding

The author’s research was previously supported by a Hypertension Genetics Specialized Center of Research (HL 550006) from the National Heart, Lung, and Blood Institute (NHLBI) and is currently supported by a Program Project Grant (HL 084207) from the NHLBI and by an endowment from the Roy J. and Lucille A. Carver Trust.

Disclosures

None.

References

Response to Dietary Therapy for Obesity: An Emperor With No Clothes

David W. Harsha, George A. Bray

Dr Allyn Mark’s review of the literature involving the use of weight loss to improve blood pressure status uses as its linchpin the well established observation that maintenance of weight loss is difficult to achieve, especially through behavioral/lifestyle intervention approaches. We agree. Weight loss has been a particularly hard target for researchers, health professionals, and the public at large. This provides the impetus for other approaches including surgical and pharmacological procedures to address the issue.

Apparently there is no disagreement that weight loss does benefit one’s blood pressure profile. The point of departure is one of degree of pessimism that behavioral and related interventions cannot succeed. We are more optimistic in this regard than Dr Mark.

As he has ably pointed out in his accompanying article, there are numerous biological, behavioral, and environmental paths to overweight. It is not surprising that the more or less “one size fits all” approaches that have been taken in past behavioral interventions have been less than impressive. Advances in tailoring the message and the behavioral intervention to individual characteristics are clearly needed but, we think, also clearly addressable. This is still a very immature field of research with much left to do.

Concomitantly, we are not averse to multi-therapeutic approaches. As with a number of behavioral conditions, combined medication and behavioral therapies may be the best approach, with surgery as the last resort in extreme cases.

In our view, the emperor’s clothes are not so much the issue as the size of his tent.
Dietary Therapy for Obesity: An Emperor With No Clothes
Allyn L. Mark

Hypertension. 2008;51:1426-1434; originally published online May 12, 2008;
doi: 10.1161/HYPERTENSIONAHA.106.085944

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/51/6/1426

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/