High-Normal Blood Pressure and Cognition: Supplying the Missing Data

To the Editor:

In the March 2008 issue of Hypertension, Knecht et al. report that high-normal blood pressure is associated with poor cognitive performance. Predicted means of a global cognitive performance measure were plotted against mean systolic blood pressure (BP; SBP) values for a sample (N=377; mean age: 64 years) defined to have high-normal blood pressure (BP; SBP) values for a sample (N=377; mean age: 64 years) defined as having systolic blood pressure (SBP) between 120 and 140 mm Hg. This inverse relation between SBP and cognitive performance decreased from the lowest BP grouping to 160 to 170 mm Hg. Cognitive performance decreased from the lowest BP grouping to 160 to 170 mm Hg. This inverse linear relation between SBP and cognitive performance has been described previously.2–4

Knecht et al. note that the inverse relation between SBP and cognitive performance passes through the reference range of BP values (Figure 2), but they did not relate SBP to cognitive performance in analyses limited to only those persons within the reference range of systolic and diastolic BP values, analyses that are necessary to more precisely estimate the decrement in cognitive performance for persons within the normal BP range. Knecht et al. measured SBP and cognition concurrently at a single examination, a limitation that they note. Although data on several domains of cognitive performance were obtained, findings were reported only for a global composite score.

Using data from the Maine-Syracuse Longitudinal Study, we performed each of the missing analyses noted above. These analyses provide important additional support for the Knecht et al. finding.

Initiated in 1975, the Maine-Syracuse Longitudinal Study involves 6 waves of data collection on BP and BP-related risk factors in a community-based sample.3–5 In our analysis, we relate the average of all of the available SBP measurements from wave 1 through wave 6 (15 measurements per wave) to an expanded set of cognitive performance measures introduced at wave 6 (2001–2007).5 We used 4 composite scores (cognitive domains) and a single measure of abstract reasoning (Similarities) based on previous factor analysis involving 17 individual cognitive measures.5

Excluding persons with a history of stroke (n=35), dementia (n=8), diastolic and/or systolic BP values outside the normal to high reference range (n=308), poor English skills (n=1), and previous alcohol abuse (n=1), data were available for 780 participants (mean age: 59.9 years [SD: 12.5]; mean education: 14.7 years [SD: 2.7]; 63.3% women; 42.4% treated with antihypertensive drugs at wave 6; and SBP range: 90 to 140 mm Hg [mean: 121 mm Hg; SD: 12.1 mm Hg]). Other sample characteristics have been described in detail previously.3 Antihypertensive drug treatment by BP interactions for all of the cognitive performance measures were nonsignificant (Ps>0.10); thus, the treated and untreated individuals were combined in the analyses. Our statistical analyses included sets of covariates used by Knecht et al.: (1) basic set (sex, age, and education); (2) basic set plus risk factors (body mass index plus alcohol consumption plus cigarettes plus total cholesterol); and (3) basic set plus risk factors plus antihypertensive drugs (yes or no).

The Table shows the relation between 10-mm Hg increments in mean SBP and cognitive performance in SD units. Increments in SBP were inversely related to the level of cognitive performance. The fewest number of cognitive variables related to performance was obtained with adjustment for the basic plus risk factor plus antihypertensive drugs treatment model: global performance, verbal memory, and working memory.

Given that our analyses were confined to the participants with normal to high-normal BP, we can estimate decrements in cognitive performance relative to each 10-mm Hg increment in SBP. Using the basic model and global performance as an illustration, every 10-mm Hg increment in SBP was related to a 0.075-SD decrement in cognitive performance. The 95% CI was −0.12 to −0.02. Our results indicate that SBP-related cognitive differences are significant.

Table. Regression Coefficients (β) and SEs Showing the Inverse Relation Between Mean SBP (in 10-mm Hg Increments) and Cognitive Performance Measures (z Scores)

<table>
<thead>
<tr>
<th>Cognitive Domain</th>
<th>Basic Model</th>
<th>Basic + Risk Factors Model</th>
<th>Basic + Risk Factors + Treatment Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β</td>
<td>SE</td>
<td>β</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Global score</td>
<td>−0.075*</td>
<td>0.027</td>
<td>−0.070†</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−0.061†</td>
</tr>
<tr>
<td>Verbal memory</td>
<td>−0.078*</td>
<td>0.030</td>
<td>−0.093*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>−0.080†</td>
</tr>
<tr>
<td>Working memory</td>
<td>−0.093*</td>
<td>0.032</td>
<td>−0.080†</td>
</tr>
<tr>
<td></td>
<td>−0.053</td>
<td>0.032</td>
<td>−0.032</td>
</tr>
<tr>
<td>Abstract reasoning</td>
<td>−0.068†</td>
<td>0.031</td>
<td>−0.054</td>
</tr>
<tr>
<td>Visual-spatial organization/memory</td>
<td>−0.063†</td>
<td>0.029</td>
<td>−0.054</td>
</tr>
<tr>
<td>Scanning and tracking</td>
<td>−0.009</td>
<td>0.027</td>
<td>0.002</td>
</tr>
<tr>
<td></td>
<td>0.002</td>
<td>0.028</td>
<td>0.003</td>
</tr>
<tr>
<td></td>
<td>0.030</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*P<0.01. †P<0.05.

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Heart Lung and Blood Institute or the National Institutes of Health. This research was approved by the institutional review board of the University of Maine, and informed consent was obtained from all of the participants.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.108.114165
deficits within the normal BP range are modest from a clinical perspective. However, even these small deficits are important in terms of attributed risk for lowered cognition in the population.

Sources of Funding
This analysis was supported by grant R01HL81290-03 from the National Heart, Lung, and Blood Institute.

Disclosures
None.

Merrill F. Elias
Department of Psychology
University of Maine
Orono, Maine

Penelope K. Elias
Gregory A. Dore
Michael A. Robbins
Department of Psychology
University of Maine
Orono, Maine

High-Normal Blood Pressure and Cognition: Supplying the Missing Data
Merrill F. Elias, Penelope K. Elias, Gregory A. Dore and Michael A. Robbins

Hypertension. 2008;52:e1-e2; originally published online May 12, 2008;
doi: 10.1161/HYPERTENSIONAHA.108.114165
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/52/1/e1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/