Cerebral Hemodynamics During Treatment With Sodium Nitroprusside Versus Labetalol in Malignant Hypertension

Rogier V. Immink, Bert-Jan H. van den Born, Gert A. van Montfrans, Yu-Sok Kim, Markus W. Hollmann, Johannes J. van Lieshout

Abstract—In patients with malignant hypertension, immediate blood pressure reduction is indicated to prevent further organ damage. Because cerebral autoregulatory capacity is impaired in these patients, a pharmacologically induced decline of blood pressure reduces cerebral blood flow with the danger of cerebral hyperperfusion. We compared the reduction in transcranial Doppler–determined middle cerebral artery blood velocity during blood pressure lowering with sodium nitroprusside with that of labetalol. Therefore, in 15 patients, fulfilling World Health Organization criteria for malignant hypertension, beat-to-beat mean arterial pressure, systemic vascular resistance (Modelflow), mean middle cerebral artery blood velocity, and cerebrovascular resistance index (mean blood pressure:mean middle cerebral artery blood flow velocity ratio), were monitored during treatment with sodium nitroprusside (n=8) or labetalol (n=7). The reduction in mean arterial blood pressure with sodium nitroprusside (−28±3%; mean±SEM) and labetalol (−28±4%) was comparable. With labetalol, both systemic and cerebral vascular resistance decreased proportionally (−13±10% and −17±5%), whereas with sodium nitroprusside, the decline in systemic vascular resistance was larger than that in cerebral vascular resistance (−53±4% and −7±4%). The rate of reduction in middle cerebral artery blood velocity was smaller with labetalol than with sodium nitroprusside (0.45±0.05% versus 0.78±0.04% cm·s⁻¹·%mm Hg⁻¹; P<0.05). In conclusion, sodium nitroprusside reduced systemic vascular resistance rather than cerebral vascular resistance with a larger rate of reduction in middle cerebral artery blood velocity, suggesting a preferential blood flow to the low resistance systemic vascular bed rather than the cerebral vascular bed. (Hypertension. 2008;52:236-240.)

Key Words: cardiovascular disease/stroke ■ other hypertension ■ Doppler ultrasound ■ transcranial Doppler ■ cardiovascular pharmacology

Malignant hypertension and hypertensive encephalopathy are hypertensive emergencies, characterized by a severe elevation of blood pressure (BP) and impaired cerebral autoregulation (CA).¹ CA is defined as the capacity to maintain constancy of cerebral blood flow (CBF) despite changes in mean arterial pressure (MAP). Normally CA is preserved for a range of MAP from ≈60 to 150 mm Hg, respectively the lower and upper limits of CA. In patients with moderate hypertension, the autoregulation curve is shifted toward higher BP values, protecting the brain from hyperperfusion.² However, in patients with malignant hypertension, BP is supposed to surpass the upper limit of CA with loss of control of cerebral perfusion. Under those circumstances, CBF becomes a function of arterial pressure, so-called pressure dependency.³ Therefore, the initial reduction in BP is restricted to ≈25% of the presenting level to avoid symptomatic hyperperfusion of the brain.⁴−⁶ Of the therapeutic agents available, sodium nitroprusside (SNP) and labetalol are commonly used for the initial parenteral treatment of malignant hypertension.⁵⁻⁷ SNP, an arteriolar and venous vasodilator, is widely advocated as a first-line agent in the treatment of malignant hypertension.⁶⁻⁹ It is effective within seconds and has a short half-life, making it most suitable for an immediate and controlled reduction of BP. Despite its superior pharmacokinetics, SNP has some disadvantages, which may hamper its use. First, with SNP infusion, intracranial pressure may rise,¹⁰ although in subjects with intact CA, CBF velocity is preserved.¹¹ Second, there is a dose-dependent risk of cyanide and thiocyanide toxicity.¹² Labetalol, an α- and β-adrenergic blocker, has a slower onset of action with a maximal hypotensive effect within 5 to 15 minutes.⁴ Its long half-life of 4 to 6 hours limits the ability to promptly correct hypotension with cessation of the drug.¹³ In

Continuing medical education (CME) credit is available for this article. Go to http://cme.ahajournals.org to take the quiz.

Received January 21, 2008; first decision February 5, 2008; revision accepted June 9, 2008.

From the Departments of Anesthesiology (R.V.I., M.W.H.) and Internal and Vascular Medicine (B-J.H.v.d.B., G.A.v.M., Y-S.K., J.J.v.L.), Laboratory for Clinical Cardiovascular Physiology, AMC Heart Failure Research Center (R.V.I., Y-S.K., J.J.v.L.), Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. Correspondence to Johannes J. van Lieshout, Medium Care Unit, Department of Internal Medicine, Academic Medical Center F7-205, University of Amsterdam, PO Box 22700, 1100 DE Amsterdam, The Netherlands. E-mail j.j.vanlieshout@amc.uva.nl

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.108.110395

236
contrast to SNP, however, intracranial pressure does not seem to increase, and labetalol in therapeutic dosages is nontoxic. Both agents reduce BP effectively in patients with malignant hypertension, but their distinct effects on the cerebral and systemic circulation have not been investigated. We considered that, in patients with malignant hypertension and failing CA, an immediate reduction of BP has to be achieved with the smallest reduction of cerebral perfusion possible. In this study we, therefore, set out to determine the effect of an immediate -25% reduction in MAP with SNP or labetalol on cerebral and systemic vascular resistance (SVR) in patients with malignant hypertension.

Our earlier observations on CBF during parenteral BP lowering treatment were obtained with SNP. We now report the findings in a group of similar patients with malignant hypertension using labetalol parenterally administered and compared cerebral and systemic hemodynamics in the 2 groups.

Subjects and Methods

Subjects
Fifteen patients who fulfilled the World Health Organization criteria for malignant hypertension, severely elevated BP together with grade III (bilateral retinal hemorrhages or cotton wool exudates) or IV (III plus papilledema) hypertensive retinopathy according to the Keith, Wagener, and Barker classification, were included in the study. The details of patients receiving SNP have been described previously.

Of the patients receiving labetalol, 3 had a grade III and 2 a grade IV hypertensive retinopathy. The other 2 patients had no bilateral retinal abnormalities but had clinical features of hypertensive encephalopathy. One patient was a 21-year-old male who was on chronic ambulatory peritoneal dialysis because of renal failure due to systemic lupus erythematosus nephritis. He presented with a BP of 228/140 mm Hg and generalized seizures after withdrawal of antihypertensive medication on his own initiative. A computed tomography scan of the brain showed a decreased sign signal intensity in the parieto-occipital regions consistent with posterior leukoencephalopathy. Treatment with diphontaine and labetalol terminated his convulsions, and with adequate antihypertensive medical treatment his recovery was uneventful. For the other patient was a 19-year-old who had no bilateral retinal abnormalities but had clinical features of hypertensive encephalopathy. One patient was a 21-year-old male who was on chronic ambulatory peritoneal dialysis because of renal failure due to systemic lupus erythematosus nephritis. He presented with a BP of 228/140 mm Hg and generalized seizures after withdrawal of antihypertensive medication on his own initiative. A computed tomography scan of the brain showed a decreased sign signal intensity in the parieto-occipital regions consistent with posterior leukoencephalopathy. Treatment with diphontaine and labetalol terminated his convulsions, and with adequate antihypertensive medical treatment his recovery was uneventful. The other patient was a 19-year-old

measurements

Patients were instrumented with ECG electrodes. Intra-arterial BP was monitored through a catheter (1.1-mm ID, 20 gauge) placed in the radial artery. Heart rate was the inverse of the interbeat interval. Stroke volume (SV) was determined by a 3-element model of arterial input impedance (Modellflow). SV was calculated from the BP waveform using the model flow method incorporating age, sex, height, and weight (BeatScope 1.0 software, BMEye). This technique tracks fast changes in SV. SV was expressed as the percentage change of the presenting value, cardiac output was heart rate times SV, and SVR was the ratio of MAP/cardiac output. The middle cerebral artery blood velocity (MCA V) was measured in the proximal segment of the right middle cerebral artery (Multidop X4). Once the optimal signal/noise ratio was obtained, the probe was secured with a headband (Mark 600, Spencer Technologies). The cerebrovascular resistance index (CVRI) was expressed as the ratio of MAP:MCA Vmean.

Data Analysis

Data were expressed as means±SEMs. Changes in CBF were tracked by MCA Vmean and integrity of CA is reflected by constancy of MCA Vmean despite changes in MAP. For assessment of CA, the signals of MCA and BP were first averaged to 30-second episodes and then were linearly related to each other. To compare CA between groups, MAP and MCA Vmean were expressed as the percentage change of pretreatment values.

Dynamic CA was determined by calculating the power spectra of pressure and velocity in the frequency domain from a 3-minute episode of beat-to-beat data of MAP and MCA Vmean before BP lowering treatment with discrete Fourier transform, after spline interpolation and resampling at 4 Hz. Results were expressed as the integrated area in the low frequency range (0.07 to 0.15 Hz). To examine the strength between low-frequency MAP and MCA Vmean coherence was used to signify that the 2 cardiovascular signals covary significantly. The squared coherence function reflects the fraction of output power (MCA Vmean) that can be linearly related to the input power (MAP). From the MAP to MCA Vmean cross-spectrum, the MCA Vmean to MAP phase lead (degrees) was obtained. A phase difference below ~50° was considered abnormal.

Statistical Analysis

Changes in systemic and cerebral hemodynamics during treatment were examined by Friedman ANOVA on ranks. Differences in CA between labetalol and SNP treatment (unpaired) and before and after treatment (paired) were examined with Wilcoxon rank sum test and Wilcoxon signed rank test, respectively. A value of P<0.05 was considered to indicate a statistically significant difference.

Results

Clinical characteristics, systolic and diastolic BP (Table 1), and MCA Vmean (64±6 versus 58±8 mm Hg) did not differ between SNP and labetalol. The MCA Vmean to MAP phase difference was equally affected for SNP (30±8°) and labetalol.
talol (26±9°) with comparable coherences (0.64±0.04 and 0.59±0.05, respectively).

Target BP was reached within 60 minutes in all of the patients. Changes in systemic and cerebral hemodynamics are given in Table 2. The reduction in MAP with SNP (28±3%) and labetalol (28±4%) was comparable. SVR and CVR declined to the same extent (−13±10% and −17±5%) during treatment with labetalol, whereas with SNP the decrease in SVR (−53±4%) was larger than the decrease in CVR (−7±4%; P<0.05; Figure 1). The rate of reduction in MCA Vmean with labetalol was smaller compared with SNP (0.45±0.05 versus 0.78±0.04% cm s⁻¹ % mm Hg⁻¹; P<0.05; Figure 2).

Discussion

In patients with malignant hypertension the therapeutic challenge is to reduce BP without jeopardizing the cerebral circulation against the background of impaired CA. In this study the reduction in MAP with SNP and labetalol was comparable, but the decline in MCA Vmean with labetalol versus SNP was less significant for a given reduction in BP. This could be attributed to different effects of the 2 agents on the systemic and cerebral vascular beds. With labetalol, SVR decreased proportionally to cerebral vascular resistance with a relatively small rate of reduction in MCA Vmean. In contrast, SNP reduced systemic rather than cerebral vascular resistance resulting in a preferential blood flow to the systemic vascular bed with a considerable reduction in cerebral blood velocity per unit BP. A deviation of blood flow with SNP has been reported earlier for the coronary circulation in patients with coronary artery disease where SNP treatment moved blood flow away from the ischemic myocardium to the coronary arteries.23,24

Malignant Hypertension and CA

CA is defined as the intrinsic capacity of cerebral vasculature to maintain constant CBF. Maintenance of cerebral perfusion during physiological challenges is secured by both fast- and slow-acting autoregulatory mechanisms.25 Although acute changes in BP are transmitted to the cerebral circulation, under normal conditions CBF tends to return to its baseline value within a few seconds.26,27 This short-term control is usually referred to as dynamic CA. Static CA considers the net change in CBF resulting from a manipulated change in cerebral perfusion pressure under steady-state conditions.1,25,26 When either SNP28 or labetalol29 is administered

Table 1. Patient Characteristics and BP on Admission

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>SNP</th>
<th>Labetalol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients, n</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Age, y</td>
<td>44±5</td>
<td>40±5</td>
</tr>
<tr>
<td>Gender, m:f</td>
<td>6:2</td>
<td>5:2</td>
</tr>
<tr>
<td>Height, cm</td>
<td>175±5</td>
<td>172±5</td>
</tr>
<tr>
<td>Weight, kg</td>
<td>76±5</td>
<td>73±5</td>
</tr>
<tr>
<td>BP, mm Hg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systolic</td>
<td>225±5</td>
<td>227±5</td>
</tr>
<tr>
<td>Diastolic</td>
<td>137±3</td>
<td>133±4</td>
</tr>
</tbody>
</table>

Data show brachial cuff BP. Data are means±SEMs unless otherwise specified.

Table 2. Hemodynamic Variables Before and After Treatment

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before</th>
<th>After</th>
<th>Before</th>
<th>After</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP, mm Hg</td>
<td>155±6</td>
<td>112±6*</td>
<td>166±7</td>
<td>118±5*</td>
</tr>
<tr>
<td>HR, min⁻¹</td>
<td>87±7</td>
<td>102±6*</td>
<td>99±8</td>
<td>76±6†</td>
</tr>
<tr>
<td>SV, %</td>
<td>100</td>
<td>109±4</td>
<td>100</td>
<td>109±9</td>
</tr>
<tr>
<td>CO, %</td>
<td>100</td>
<td>131±8*</td>
<td>100</td>
<td>86±9†</td>
</tr>
<tr>
<td>SVR, %</td>
<td>100</td>
<td>57±5*</td>
<td>100</td>
<td>87±10†</td>
</tr>
<tr>
<td>MCA Vmean, cm s⁻¹</td>
<td>64±6</td>
<td>50±5*</td>
<td>58±8</td>
<td>49±5*</td>
</tr>
<tr>
<td>CBF, mm Hg (cm s⁻¹)</td>
<td>2.59±0.26</td>
<td>2.42±0.29</td>
<td>3.17±0.38</td>
<td>2.55±0.28*</td>
</tr>
</tbody>
</table>

HR indicates heart rate; CO, cardiac output. Data are means±SEMs unless otherwise specified.
* P<0.05 vs before treatment.
† P<0.05 vs after treatment with SNP.

Figure 1. Systemic and cerebral vascular resistance during blood pressure reduction. Percentage change in SVR (■) and cerebral vascular resistance (□) during a decrease in blood pressure with SNP and labetalol. Mean±SEM, *P<0.05. Note that with SNP, SVR decreases and CVRi tends to increase, whereas with labetalol both SVR and CVRi decline proportionally.

Figure 2. MAP-middle cerebral artery blood velocity relationship. Reduction in MCA Vmean during a decrease in MAP by SNP (●; n=8) vs labetalol (○; n=7). The rate of reduction in MCA V was smaller with labetalol than with SNP (0.45±0.05 vs 0.78±0.04% cm s⁻¹ % mm Hg⁻¹; P<0.05; Figure 2).
Considerations

Critical for the interpretation of the data is to what extent MCA V_{mean} reflects volume flow. The MCA V_{mean} was calculated from the frequency distribution of the Doppler shifts and was assumed to represent maximal flow velocity in the center of the vessel. Changes in MCA V_{mean}, however, reflect changes in flow, only as long as the diameter of the MCA remains constant during SNP or labetalol treatment. Direct observations made during craniotomy have revealed that SNP does not affect the vessel diameter of the MCA. Therefore, constancy of MCA diameter was demonstrated for a range of pressures. Therefore, we considered that, in this study, changes in MCA V_{mean} were proportional to those in flow.

Improvement of symptoms of hypertensive encephalopathy or visual disturbances takes place after several days to weeks. The study period was too short to notice such improvement, although some patients reported a relief of headache within the study period. Another potential limitation was that the order of the open-label administration of the 2 drugs was not randomized. Our earlier observations on MCA V_{mean} during parenteral BP lowering were with SNP. We now report the findings in a group of similar patients with malignant hypertension using labetalol intravenously and compared cerebral and systemic hemodynamics in the 2 groups. Generally the admittance rate of patients with malignant hypertension in the Netherlands is fairly small, and for practical reasons a sequential drug protocol was used. In spite of this study design, patient groups were fully comparable for anthropomorphic data.

Baseline cerebral and cardiovascular variables before treatment were not statistically different or fully identical. Importantly, baseline Doppler-derived flow velocity does not reveal volume flow, whereas, in this study, MCA V_{mean} before drug treatment did not differ significantly between groups. For methodologic reasons we restricted the interpretation by considering only changes in MCA V_{mean} with reference to baseline when comparing the circulatory effects of both drugs. More importantly, the dynamic CA capacity before treatment and the magnitude of BP reduction were almost identical, leaving the main findings of this study unchallenged.

Clinical Perspectives

Both SNP and labetalol reduce BP adequately in patients with malignant hypertension. However, the underlying systemic hemodynamic mechanisms are different. The use of labetalol resulted in a proportional reduction in systemic and cerebral vascular resistances. SNP, on the other hand, reduced systemic rather than cerebral vascular resistance with a larger rate of reduction in middle cerebral artery blood velocity, suggesting a preferential blood flow to the low resistance systemic vascular bed rather than the cerebral vascular bed.

Source of Funding

This study was sponsored in part by the Dutch Heart Foundation NHS grant 98.172 (to R.V.I.).

Disclosures

None.

References

17. Jellema WT, Wesseling KH, Groeneveld AB, Stoutenbeek CP, Thijis LG, Van Lieshout J. Continuous cardiac output in septic shock by simulating...

Cerebral Hemodynamics During Treatment With Sodium Nitroprusside Versus Labetalol in Malignant Hypertension
Rogier V. Immink, Bert-Jan H. van den Born, Gert A. van Montfrans, Yu-Sok Kim, Markus W. Hollmann and Johannes J. van Lieshout

Hypertension. 2008;52:236-240; originally published online July 7, 2008;
doi: 10.1161/HYPERTENSIONAHA.108.110395
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/52/2/236

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/