Thyrotropin-Releasing Hormone Precursor Gene Knocking Down Impedes Melanocortin-Induced Hypertension in Rats

To the Editor:

Recently, da Silva et al reported that endogenous melanocortin may cause elevation of arterial blood pressure (ABP) in spontaneously hypertensive rats. We invite authors to consider that the hypothalamic thyrotropin-releasing hormone (TRH) system may be involved, because spontaneously hypertensive rats show an hyperactivity of this system, and intracerebroventricular (ICV) injections of a prepro-TRH antisense oligonucleotide (AS) decreases both elevated TRH content and ABP independent of thyroid status.

Leptin effects include increases in sympathetic activity and inhibition of the starvation-suppressed inhibition of thyroid hormones apparently by upregulating prepro-TRH gene expression. Then, leptin can increase the MC4R ligand (α-melanocyte-stimulating hormone) production to regulate TRH expression. Furthermore, we have shown that ICV leptin injections induce a pressor effect that is avoided by prepro-TRH AS pretreatment.

Hence, we proposed that melanocortin activity may raise ABP through TRH activation, and we report here that, in Wistar rats, the MCR4 agonist (α-melanocortin-stimulating hormone agonist [MTII])–induced elevation of ABP can be blocked by 24-hour ICV pretreatment with prepro-TRH AS.

Wistar rats were implanted with a guided canula into the III ventricle for MTII, AS, or saline infusion (V) as described elsewhere. Carotid artery was cannulated for mean ABP measurements. We measured body weight and food consumption in basal condition and 24 hours after ICV injection in awake animals with (ICV 1) vehicle (V), AS (150 pmol), and oligonucleotide with the inverted AS sequence (150 μg) as a control. After another 24 hours we performed a second injection (ICV 2) with V or MTII (0.6 nmol). Animals were then euthanized and the hypothalamus was removed to measure TRH (radioimmunoassay).

As expected, MTII induces a decrease in food consumption and body weight. Melanocortin also produced increases of mean ABP and hypothalamic TRH in rats treated with MTII, whereas AS pretreatment prevented both increases. MTII action was not reversed by the AS inverted sequence (Table).

In conclusion, we show that the melanocortin 3 and 4 agonist induced hypertension only in the presence of an intact hypothalamic TRH system; thus, we propose that an activation of the axis leptin-melanocortin-TRH might explain increases of ABP in this genetic model of hypertension.

Sources of Funding
These studies were supported by grants from the Agencia Nacional De Investigaciones Cientificas y Tecnicas (ANPCyT): PICT-03-13862 and PICT-05-25920.

Disclosures
None.

María S. Landa
Silvia I. García
Mariano L. Schuman
Azucena L. Álvarez
Samuel Finkielman
Carlos J. Pirola

Molecular Cardiology
Instituto de Investigaciones Médicas A. Lanari
Universidad de Buenos Aires
IDIM-CONICET
Buenos Aires, Argentina

| Table. Effect of TRH Gene Knocking Down on Melanocortin-Induced Hypertension |
|------------------|------------------|------------------|------------------|
| ICV 1 | ICV 2 | ABP, mm Hg | ABP, mm Hg | ABP, mm Hg | TRH, pg/mg of Protein |
| V | V | 109.7±3.3 | 107.3±6.3 | 109±3.6 | 1161.4±212 |
| V | MTII | 105.1±2.0 | 106.5±2.8 | 113.8±7.3† | 1926.8±454.3‡ |
| AS | MTII | 105.7±3.2 | 102.4±2.4 | 93.9±3.4† | 1098.6±253 |
| Inv | MTII | 106.7±4.0 | 102.0±8.5 | 109.8±3.9* | 1839.3±297‡ |

*P<0.05 vs 24 hours.
†P<0.05 vs basal.
‡P<0.05 vs vehicle and AS+MTII (n=4).
Thyrotropin-Releasing Hormone Precursor Gene Knocking Down Impedes Melanocortin-Induced Hypertension in Rats

María S. Landa, Silvia I. García, Mariano L. Schuman, Azucena L. Alvarez, Samuel Finkielman and Carlos J. Pirola

Hypertension. 2008;52:e8; originally published online June 16, 2008;
doi: 10.1161/HYPERTENSIONAHA.108.114686

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/52/2/e8

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/