Angiotensin II–Dependent Hypertension Increases Na Transport-Related Oxygen Consumption by the Thick Ascending Limb

Guillermo B. Silva, Jeffrey L. Garvin

Abstract—Renal medullary superoxide (O$_2^-$) increases in angiotensin (Ang) II–dependent hypertension. O$_2^-$ increases thick ascending limb Na transport, but the effect of Ang II–dependent hypertension on the thick ascending limb is unknown. We hypothesized that Ang II–dependent hypertension increases thick ascending limb NaCl transport because of enhanced O$_2^-$ production and increased protein kinase C (PKC) α activity. We measured the effect of Ang II–dependent hypertension on furosemide-sensitive oxygen consumption (a measure of Na transport), O$_2^-$ production, and PKCα translocation (a measure of PKCα activity) in thick ascending limb suspensions. Ang II–dependent hypertension increased furosemide-sensitive oxygen consumption (26.2±1.0% versus 36.6±1.2% of total oxygen consumption; P<0.01). O$_2^-$ was also increased (1.1±0.2 versus 3.2±0.5 nmol of O$_2^-$/min per milligram of protein; P<0.03) in thick ascending limbs. Unilateral renal infusion of Tempol decreased O$_2^-$ (2.4±0.4 versus 1.2±0.2 nmol of O$_2^-$/min per milligram of protein; P<0.04) and furosemide-sensitive oxygen consumption (32.8±1.3% versus 24.0±2.1% of total oxygen consumption; P<0.01) in hypertensive rats. Tempol did not affect O$_2^-$ or furosemide-sensitive oxygen consumption in normotensive controls and did not alter systolic blood pressure. Ang II–dependent hypertension increased PKCα translocation (5.7±0.3 versus 13.8±1.4 AU per milligram of protein; P<0.01). Unilateral renal infusion of Tempol reduced PKCα translocation (5.0±0.9 versus 10.4±2.6 AU per milligram of protein; P<0.04) in hypertensive rats. Unilateral renal infusion of the PKCα inhibitor Gö6976 reduced furosemide-sensitive oxygen consumption (37.4±1.5% versus 25.1±1.0% of total oxygen consumption; P<0.01) in hypertensive rats. We conclude that Ang II–dependent hypertension enhances thick ascending limb Na transport–related oxygen consumption by increasing O$_2^-$ and PKCα activity. (Hypertension. 2008;52:1091–1098.)

Key Words: ion transport ▪ reactive oxygen species ▪ kidney ▪ Na/K/2Cl cotransporter

Superoxide (O$_2^-$) is a free radical that contributes to the development of high blood pressure. Angiotensin (Ang) II–dependent hypertension increases superoxide production in the cardiovascular system, central nervous system, and kidney. Elevated oxidative stress in the kidney may contribute to the development and maintenance of Ang II–dependent hypertension. Enhanced O$_2^-$ production in the renal medulla increases blood pressure, and renal O$_2^-$ scavenging decreases blood pressure in several models of hypertension.

Augmented O$_2^-$ production in the kidney increases blood pressure by promoting Na retention. O$_2^-$–induced Na retention may occur as a result of decreased glomerular filtration rate and renal blood flow. However, O$_2^-$ may also decrease urinary volume and urinary Na excretion without changing renal blood flow and glomerular filtration rate. Such data indicate that O$_2^-$ has a direct effect on tubular transport.

The thick ascending limb reabsorbs 25% to 30% of the total filtered NaCl load. Increases in Na transport by this segment contribute to several forms of hypertension, and diuretics that decrease thick ascending limb NaCl absorption are frequently used to reduce blood pressure. Acute increases in exogenous O$_2^-$ in the thick ascending limb enhance Na transport, whereas scavenging endogenous O$_2^-$ decreases it. We have shown previously that O$_2^-$ stimulates NaCl reabsorption by activating protein kinase C (PKC).

Ang II acutely enhances NaCl reabsorption in the thick ascending limb, whereas blockade of Ang II receptors decreases it. Brief exposure of thick ascending limbs to Ang II also results in augmented O$_2^-$ production. Thus, it is likely that at least part of the acute effect of Ang II on the thick ascending limb is because of O$_2^-$ production. However, the chronic effects of Ang II–induced hypertension on NaCl absorption in this segment and the role of O$_2^-$ have not been studied. We hypothesize that Ang II–dependent hypertension increases Na transport–related oxygen consumption by thick ascending limbs because of enhanced O$_2^-$ production and the resulting PKCα activation.
Methods

Animals
This study was approved by the Henry Ford Hospital Institutional Animal Care and Use Committee. All of the studies were conducted in accord with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Male Sprague-Dawley rats weighing 200 to 250 g (Charles River Breeding Laboratories, Wilmington, Mass) were fed a diet containing 0.4% Na and 1% K (diet 8640; Harlan-Teklad) for 7 days before implantation of minipumps.

Ang II Infusion
Rats were anesthetized with ketamine (60 mg/kg IP) and xylazine (20 mg/kg IP) before surgery. Alzet D1007 (Durect) osmotic minipumps were implanted subcutaneously between the scapulae. Ang II (520 ng/kg per minute; Bachem) was infused for 7 days as reported previously.11,22

Medullary Drug Delivery
To deliver drugs into the renal outer medulla, the flow moderator of a prefilled Alzet D1007 osmotic minipump was connected to a 30-mm-long polyethylene 60 tubing. The other end of the tubing was attached by thermal fusion to a 130-mm-long polyethylene 10 tubing designed to be inserted into the renal medulla. To avoid clotting of the catheter, the latter was fenestrated in one side 10 mm from the tip using a 30-gauge needle. To assure complete drug delivery, the catheters were filled with the drug before attaching the minipump flow moderator. Minipump with fenestrated catheter was primed overnight at 37°C in sterile 0.9% saline. The next day, rats were anesthetized with ketamine (60 mg/kg IP)/xylazine (20 mg/kg IP), shaved, and cleaned with povidone-iodine 10%. Then, the left kidney was exposed via flank dorsolabial incision. A tract was created into the kidney by inserting and immediately retrieving a premeasured 1.5-mm2 section/14-mm deep solid polypropylene rod at the corticomedullary boundary. The rod was inserted from the inferior pole, along the longitudinal axis of the kidney and perpendicular to the medullary rays. After that, the fenestrated catheter was inserted into the tract and fixed to the kidney by gluing it with 10 µL of medical cyanoacrylate glue (Vetbond; 3M) and a 7×7-mm dressing sponge (Topper, Johnson and Johnson). To avoid detachment of the catheter, a loop was made, and it was sutured to the inner abdominal muscle layer. The abdominal cavity was washed with sterile saline, and the muscular layer was sutured. The tubing was tunneled under the skin to the scapulae, and the minipump was implanted as described above. On the day of the experiment, the catheter, minipump, and flow moderator were retrieved from the animal and tested for leakage. To verify complete delivery of the drug, the remaining volume in the pump was measured.

To test the renal medullary delivery of drugs, we first loaded a minipump with the low molecular weight protein dye Coomassie blue R250 (50 µg/kg per minute) and infused it into the left kidney of a Sprague-Dawley rat as described above. After 4 days of infusion, intense traces of the dye were found in the catheter’s pathway corticomedullary boundary, and the outer medullary region. To a much less extent, the dye was also present in the inner medullary region. Stippled area depicts the boundary and outer medulla. To much less extent, the dye was found in the inner medullary region. Figure 1A, Longitudinal section of the infused kidney. B, Area stained by the infusion of Coomassie blue R250. Intense traces of dye were found in the catheter’s pathway corticomedullary boundary and outer medulla. To much less extent, the dye was found in the inner medullary region. Stippled area depicts the area of tissue used to perform the experiments.

Systolic Blood Pressure Measurements
Systolic blood pressure was measured by tail cuff (BP-2000; Visitech) at 1, 3, and 7 days before Ang II infusion. Systolic blood pressure on the day before implanting minipumps was taken as basal systolic blood pressure. After initiating Ang II infusion, systolic blood pressure was measured on days 1, 3, and 7. Blood pressure was measured 3 times in 3 minutes. The 3 values were averaged to obtain a single blood pressure measurement for each day.

Medullary Thick Ascending Limb Suspensions
Medullary thick ascending limb suspensions were prepared as described in the Methods. At least 93% of tubules in suspension were thick ascending limbs. Kidneys were perfused retrograde via the abdominal aorta with 40 mL of 0.1% collagenase type I (Sigma-Aldrich) and 100 U of heparin in HEPES-buffered physiological saline containing the following (in mmol/L): 130 NaCl, 4 KCl, 2.5 NaH2PO4, 1.2 MgSO4, 2 calcium delactate, 5.5 glucose, 6 D/L-l-alanine, 1 trisodium citrate, and 10 HEPES. The inner stripe of the outer medulla was dissected from coronal slices of the kidney. In experiments involving medullary drug delivery, only the outer medullary tissue adjacent to the catheter was used (Figure 1B). The tissue was then minced and incubated at 37°C for 30 minutes in 0.1% collagenase type I. During this time, the suspension was agitated and gassed with 100% oxygen every 5 minutes. Tissue was then centrifuged at 93g for 2 minutes, resuspended in cold HEPES-buffered physiological saline, and stirred on ice for 30 minutes, producing a suspension of tubules. The suspension was filtered through a 250-µm nylon mesh and spun again for 2 minutes. The pellet was washed and resuspended in 1 mL of cold HEPES-buffered physiological saline.

Measurements of O2·− Production
Aliquots (200 µL) of thick ascending limb suspensions were placed in polypropylene tubes. Then, 700 µL of HEPES-buffered physiological saline was added, and tubes were placed on ice. Lucigenin (Sigma-Aldrich) was added to the suspensions to a final concentra-
tion of 5 μmol/L, and the tubes were incubated for 30 minutes at 37°C. Tubes were placed in a luminometer (model FB12/Sirius, Zylux Co) and maintained at 37°C. The average of the last 3 of 10 consecutive measurements was calculated for each sample. The O$_2^-$ scavenger tiron (Sigma-Aldrich) was added to the tube to a final concentration of 10 mmol/L, and measurements were repeated. The difference in average luminescence between samples with and without tiron was used to calculate the luminescence produced by O$_2^-$. Measurements were normalized for protein content.

Furosemide-Sensitive Oxygen Consumption Measurements

Furosemide-sensitive oxygen consumption is an indicator of Na transport by thick ascending limbs, because furosemide inhibits NKCC2, the transporter responsible for vectorial NaCl transport, and 25% to 40% of total oxygen consumption by this segment is related to NaCl transport.23,24 Thick ascending limbs were resuspended in 0.1 mL of HEPES-buffered physiological saline warmed to 37°C and equilibrated with 100% oxygen. Then they were added to a closed chamber at 37°C, and oxygen consumption was recorded continuously. An initial constant slope was established at the beginning of each experiment, and then furosemide (10$^-7$ mol/L; Hospira) was added. All of the experiments were completed within 15 minutes. At the end of the experiment, an aliquot of the suspension was used to determine protein content.

Measurements of PKCα and PKCβ Translocation

PKCα and PKCβ have been shown to translocate to membrane-enriched fractions under different conditions after activation.25,26 Therefore, we used translocation of these enzymes as a measure of their activation. Medullary thick ascending limbs were resuspended in homogenization buffer containing the following (in mmol/L): 50 Tris-HCl, 150 NaCl, 0.1 (4-[2-aminoethyl]-benzene sulfonyl fluoride, and 4 benzamidase; as well as (in μg/mL) 5 antipain, 10 aprotinin, 5 leupeptin, 5 chymostatin, and 5 pepstatin A (Sigma-Aldrich). The suspension was homogenized, sonicated, and then spun at 1200g for 10 minutes. The supernatant was ultracentrifuged at 100 000g for 60 minutes. The resulting supernatant was then considered the cytosolic fraction. The pellet was resuspended in homogenization buffer plus 0.1% Triton X-100 and ultracentrifuged at 100 000g for 60 minutes. The supernatant was considered the particulate fraction.

Cytosolic and particulate fractions were loaded on SDS-polyacrylamide gels, and proteins were separated by electrophoresis. PKCα and PKCβ levels were detected by Western blot using PKCα and PKCβ monoclonal antibodies (BD Transduction Laboratories), as described previously.17 A decrease in the amount of PKCα and PKCβ from the cytosolic fraction and, consequently, an increase in particulate fraction were taken as activation of the enzyme. Band intensities were normalized to protein loading.

Determination of Protein Content

Total protein content was determined using Coomassie Plus reagent (Pierce), based on Bradford’s colorimetric method.

Statistics

Data are reported as means±SEMs. Differences in means were analyzed using Welch t test for unpaired experiments. This test adjusts the degrees of freedom for the test to adjust for unequal variation. For paired experiments, Student t test was used. Statistical analysis was performed by the Henry Ford Hospital Department of Biostatistics and Epidemiology.

Results

We first studied the effects of Ang II–dependent hypertension on thick ascending limb NaCl absorption. Furosemide-sensitive oxygen consumption was used as a measure of Na transport. This technique can be used for the following reasons: (1) furosemide inhibits Na/K/2Cl cotransporter activity, and this transporter is responsible for NaCl entry into the cell and, thus, vectorial NaCl transport in this segment; (2) 25% to 40% of total oxygen consumption by thick ascending limbs is related to Na transport; and (3) oxygen consumption is stoichiometrically related to Na transport.23,24

We found that furosemide decreased oxygen consumption by 36.6±1.2% of total oxygen consumption (from 109.6±15.2 to 68.3±13.1 nmol of oxygen per minute per milligram of protein) in suspensions from Ang II–dependent hypertension rats. In contrast, furosemide decreased oxygen consumption in thick ascending limbs from vehicle-infused rats by only 20.2±1.5% of total oxygen consumption (from 86.7±8.1 to 63.2±8.9 nmol of oxygen per minute per milligram of protein; Figure 2; P<0.01 versus Ang II–infused rats; n=6). These data indicate that Ang II–dependent hypertension increases Na transport–related oxygen consumption by thick ascending limbs.

Because Ang II–dependent hypertension increases renal O$_2^-$ production, and acute O$_2^-$ treatment stimulates NaCl in the thick ascending limb,27 we next measured the effect of Ang II–dependent hypertension on O$_2^-$ production in vehicle and Ang II–infused rats. We found that O$_2^-$ production by thick ascending limbs of Ang II–infused rats was 3.2±0.5 nmol of O$_2^-$ per minute per milligram of protein. In contrast, O$_2^-$ production was only 1.1±0.2 nmol of O$_2^-$ per minute per milligram of protein by thick ascending limbs of vehicle-infused rats (Figure 3; P<0.03; n=8). Systolic blood pressure of Ang II–dependent hypertensive rats was 204±2 mm Hg compared with 112±4 mm Hg for controls. Thus, Ang II–dependent hypertension increased O$_2^-$ production by thick ascending limbs.

To study whether increased O$_2^-$ was responsible for enhanced Na transport–related oxygen consumption, we measured furosemide-sensitive oxygen consumption in thick ascending limb suspensions of Tempol-infused and noninfused (control) kidneys from Ang II–infused rats. We found that furosemide decreased oxygen consumption by thick ascending limbs from Tempol-infused kidneys by 24.0±2.1% of total oxygen consumption (from 93.8±9.2 to
71.1±11.3 nmol of oxygen per minute per milligram of protein. In contrast, furosemide decreased oxygen consumption by 32.8±1.3% of total oxygen consumption (from 129.1±9.2 to 87.9±12.4 nmol of oxygen per minute per milligram protein) in suspensions from the untreated kidneys (Figure 4; P<0.01 versus Tempol-infused; n=8). Tempol infusion did not change furosemide-sensitive oxygen consumption in infused and noninfused kidneys from normotensive animals (28.7±1.5% versus 26.5±3.0% of total oxygen consumption; P value not significant; n=5). Also, vehicle infusion had no effect on furosemide-sensitive oxygen consumption in infused and noninfused kidneys from normotensive animals. These data indicate that Tempol decreased Na transport–related oxygen consumption in Ang II–dependent hypertensive rats and that placement of the catheter did not alter the thick ascending limb furosemide-sensitive oxygen consumption.

To show that the effect of Tempol was because of \(\text{O}_2^- \) scavenging, we measured \(\text{O}_2^- \) production by thick ascending limbs from Tempol-infused and control kidneys of Ang II–infused rats. We found that \(\text{O}_2^- \) production by thick ascending limbs from the control kidney was 2.4±0.4 nmol of \(\text{O}_2^- \) per minute per milligram of protein. In contrast, \(\text{O}_2^- \) production by thick ascending limbs of the Tempol-infused kidney was 1.2±0.2 nmol of \(\text{O}_2^- \) per minute per milligram of protein (Figure 5; P<0.04; n=7). Intramedullary infusion of vehicle had no effect on \(\text{O}_2^- \) production in normotensive animals. These data indicate that intramedullary infusion of Tempol decreased \(\text{O}_2^- \) levels in the ipsilateral kidney without affecting \(\text{O}_2^- \) production in the contralateral kidney.

To test whether the changes in furosemide-sensitive oxygen consumption were because of reduced blood pressure caused by Tempol, we measured systolic blood pressure. Intramedullary infusion of Tempol into one kidney had no effect on systolic blood pressure at day 7 in Ang II–infused rats (204±4 versus 207±11 mm Hg; P value not significant; n=8). These data indicate that the observed decrease in furosemide-sensitive oxygen consumption after Tempol infusion was not because of reduced systolic blood pressure. Acute treatment of thick ascending limbs with \(\text{O}_2^- \) has been shown to stimulate PKC\(\alpha \) activity.17 Also, several forms of hypertension increase PKC\(\beta \) activity.28,29 Thus, we measured PKC\(\alpha \) and PKC\(\beta \) activation after 7 days of Ang II infusion by measuring translocation of these enzymes. We found that PKC\(\alpha \) translocation to membrane-enriched fractions was 13.8±1.4 AU per mg of protein in thick ascending limbs from Ang II–infused animals. In contrast, PKC\(\alpha \) translocation was only 5.7±0.3 AU/mg of protein in thick ascending limbs from vehicle-infused animals (Figure 6; P<0.01; n=6). Ang II–dependent hypertension did not significantly increase PKC\(\beta \) translocation (32.3±4.9 versus 28.6±3.6 AU per mg of protein; P value not significant; n=5).

To study whether elevated PKC\(\alpha \) translocation to membrane-enriched fractions was because of increased \(\text{O}_2^- \) levels, we measured PKC\(\alpha \) translocation after intramedullary infusion of Tempol into one kidney of Ang II–dependent hypertensive rats. We found that, in thick ascending limbs from the Tempol-infused kidney, PKC\(\alpha \) translocation was 5.0±0.9 AU per mg of protein, whereas in tubules from the contralateral kidney it was 10.4±2.6 AU per mg of protein (Figure 7; P<0.04; n=7). Intramedullary infusion of vehicle had no effect on PKC\(\alpha \) translocation in thick ascending limbs from normotensive rats. These data indicate that chronic increases in \(\text{O}_2^- \) levels, rather than Ang II per se, or systolic blood pressure, stimulate PKC\(\alpha \) activity.
Because the acute effects of O$_2^\cdot$ on transport are mediated by PKC in the thick ascending limb, we measured furosemide-sensitive oxygen consumption by thick ascending limbs from Ang II–infused animals that received intramedullary infusions of the PKC/α-selective inhibitor Gö6976 in one kidney. We found that, in the control kidney of Ang II–infused rats, furosemide decreased oxygen consumption in thick ascending limbs by 37.4±1.5% of total oxygen consumption (from 126.3±18.5 to 78.2±12.2 nmol of oxygen per minute per milligram of protein). In contrast, in the kidney receiving Gö6976, furosemide decreased oxygen consumption in thick ascending limbs by 25.1±1.0% of total oxygen consumption (from 94.6±11.3 to 70.5±12.4 nmol of oxygen per minute per milligram of protein; Figure 8; $P<0.01$ versus control; $n=6$). Gö6976 infusion did not change furosemide-sensitive oxygen consumption in infused and noninfused kidneys from normotensive animals. Taken together these data indicate that Ang II–dependent hypertension increases Na transport–related oxygen consumption in the thick ascending limb by activating PKC/α.

Discussion

The thick ascending limb absorbs 25% to 30% of the filtered load of NaCl, and abnormal NaCl absorption by this segment is implicated in other forms of hypertension; therefore, we first studied the effect of Ang II–dependent hypertension on Na transport–related oxygen consumption. Because of the increased medullary tissue fibrosis, isolation and perfusion of thick ascending limbs from Ang II–hypertensive animals are difficult to perform and highly variable. Consequently, we measured furosemide-sensitive oxygen consumption and found an increase of 39% during Ang II–dependent hypertension.

Ang II–dependent hypertension increases renal O$_2^\cdot$ production. Acute O$_2^\cdot$ treatment stimulates NaCl absorption in the thick ascending limb. Therefore, we measured the effect of Ang II–dependent hypertension on O$_2^\cdot$ production in this segment. Although others have shown that Ang II–dependent hypertension augments reactive oxygen species in the kidney cortex and medulla, O$_2^\cdot$ production in the thick ascending limb has not been measured. We found that O$_2^\cdot$ in medullary thick ascending limbs was increased by 190% in Ang II–dependent hypertension. These data demonstrate that Ang II–dependent hypertension enhances the production of reactive oxygen species in the thick ascending limb. However, this does not necessarily imply that this segment is the only...
nephron segment producing \(\text{O}_2^\cdot \) under this pathological condition.

The increased thick ascending limb transport-related oxygen consumption caused by Ang II–dependent hypertension could be because of elevated blood pressure, increased circulating Ang II (which directly affects transport-related oxygen consumption by activating different signaling pathways), or increased \(\text{O}_2^\cdot \). To test which is responsible, we infused the \(\text{O}_2^\cdot \) scavenger Tempol into one kidney of Ang II–hypertensive rats and measured transport-related oxygen consumption, \(\text{O}_2^\cdot \) levels, and systolic blood pressure. We found that transport-related oxygen consumption and \(\text{O}_2^\cdot \) levels returned to normal values in the Tempol-infused kidney but remained high in the contralateral kidney. Systolic blood pressure was not altered by unilateral renal Tempol infusion. Because both kidneys were exposed to the same systolic blood pressure, the decrease in Na transport-related oxygen consumption in the Tempol-infused kidney could not be because of a change in blood pressure. Similarly, because both kidneys were exposed to the same circulating levels of Ang II, it is unlikely that signaling cascades activated by Ang II and not related to \(\text{O}_2^\cdot \) enhance NaCl reabsorption in Ang II–dependent hypertension. Thus, these data indicate that Ang II–dependent hypertension increases thick ascending limb NaCl transport by potentiating \(\text{O}_2^\cdot \) production. However, our results do not rule out the possibility that Tempol could also decrease glomerular filtration rate of juxtamedullary glomeruli located in the corticomедullary boundary, thus modifying transport by the thick ascending limb.

We have shown previously that \(\text{O}_2^\cdot \) acutely stimulates PKCa activity.\(^{17}\) To study whether this is also true for chronic \(\text{O}_2^\cdot \) elevation, we measured PKCa translocation in Ang II–dependent hypertension, because increased PKCa translocation correlates with increases in activity. We found enhanced PKCa activity in thick ascending limbs from hypertensive animals. To study whether PKCa activity was a result or cause of the increase in \(\text{O}_2^\cdot \), we measured the effect of Tempol on PKCa activity. We found that Tempol prevented the increase in activity caused by Ang II–dependent hypertension. These data indicate that increases in endogenously produced \(\text{O}_2^\cdot \) during Ang II–dependent hypertension stimulate PKCa activity by the thick ascending limb.

Finally, we tested whether the effects of Ang II–dependent hypertension on transport-related oxygen consumption were because of PKCa activation. We found that Ang II–dependent hypertension increased PKCa activity in the thick ascending limb. To test whether this increase had any consequence on Na transport–related oxygen consumption, we infused the PKCa/\(\beta \)-selective inhibitor G6976 into one kidney of Ang II–hypertensive rats. We found that Na transport–related oxygen consumption decreased to normal values in the G6976-infused kidney but remained high in the contralateral kidney. Taken together these data indicate that Ang II–dependent hypertension increases PKCa activity, resulting in enhanced Na transport–related oxygen consumption by thick ascending limbs.

We found that Ang II–dependent hypertension stimulates Na transport–related oxygen consumption in the thick ascending limb. Although the consequences of Ang II–dependent hypertension have been widely described in other renal structures, there are no other reports of the functional effects of this form of hypertension on Na transport by any nephron segment. However, our data are supported by the increased abundance of the apical Na/K/2Cl cotransporter and Na/H exchanger in the thick ascending limb after Ang II infusion.\(^{33}\) Furthermore, we\(^{11} \) and others\(^{13}\) have reported previously that NaCl absorption by the thick ascending limb in salt-sensitive hypertension is enhanced.

We found that during Ang II–dependent hypertension there is increased \(\text{O}_2^\cdot \) production in the thick ascending limb. Our results extend those of others showing that Ang II–dependent hypertension increases the production of reactive oxygen species in the kidney.\(^{5,6} \) They are also supported by data showing that acute Ang II can stimulate \(\text{O}_2^\cdot \) production in this segment.\(^{20} \) Most of the effects of Ang II are mediated by the Ang II type 1 and type 2 receptors, both of which are expressed by the thick ascending limb.\(^{34,35} \) Because most of the effects of Ang II on \(\text{O}_2^\cdot \) production are mediated by Ang II type 1 receptors, intramedullary blockade of these receptors by losartan would be expected to decrease \(\text{O}_2^\cdot \) levels, similar to Tempol infusion.

To show that the effects of Ang II–dependent hypertension on Na transport–related oxygen consumption are attributable to \(\text{O}_2^\cdot \), we infused Tempol into one kidney. We found that Na transport–related oxygen consumption was reduced in the Tempol-infused kidney compared with the contralateral kidney. We concluded that a decrease in \(\text{O}_2^\cdot \) was responsible for the increased Ang II–dependent hypertension, because circulating Ang II levels are the same for the Tempol-infused and contralateral kidneys. We concluded that an increase in Ang II–dependent hypertension is enhanced.

The fact that unilateral renal Tempol infusion did not lower blood pressure was key to the above conclusions and appears to conflict with other reports in the literature.\(^{6,7} \) However, there is a major difference between our study and those. The studies showing that Tempol can reduce blood pressure in Ang II–dependent hypertension administrated Tempol systemically, whereas we infused Tempol directly into the medulla of 1 kidney to minimize its effects on the vasculature and contralateral kidney. The fact that both \(\text{O}_2^\cdot \) and Na transport–related oxygen consumption were still elevated in the contralateral kidney indicates that Tempol did not have any systemic effect.

It has been reported that medullary \(\text{H}_2\text{O}_2 \) is a key factor in other forms of hypertension.\(^{2,36} \) We concluded that, during Ang II–dependent hypertension, \(\text{O}_2^\cdot \), rather than \(\text{H}_2\text{O}_2 \), is the mediator of the effects on PKCa for 2 reasons: we have shown previously that \(\text{O}_2^\cdot \), in the presence of catalase, stimulates PKCa, indicating that \(\text{H}_2\text{O}_2 \) is not involved,\(^{17} \) and Tempol is a superoxide dismutase mimetic that converts \(\text{O}_2^\cdot \).
into H₂O₂. Consequently, while decreasing O₂⁻, Tempol increases H₂O₂. Therefore, the Tempol-infused kidney has increased H₂O₂ compared with the control kidney, and yet Na transport-related oxygen consumption is reduced to normal.

We found that, in Ang II–dependent hypertension, PKCε increases by 142%. After renal unilateral infarction of the PKCε/β-selective inhibitor, Gö6976, Na transport-related oxygen consumption was reduced to normal levels. Activation of PKCε regulates NaCl absorption in several nephron segments.37–39 Acutely, PKCε mediates the effects of O₂⁻ on transport.7 Thus, increased and sustained PKCε activation by O₂⁻ in Ang II–dependent hypertension may lead to increased Na and water reabsorption.

In summary, we found that Ang II–dependent hypertension in the thick ascending limb of the loop of Henle increases O₂⁻ production. This activates PKCε, which, in turn, stimulates Na transport–related oxygen consumption. These changes are independent of blood pressure.

Perspectives

The present work shows that Na transport by the thick ascending limb during Ang II–induced hypertension is increased and independent of blood pressure. These conclusions lead to the understanding of renal medullary Na transport during the pathogenesis of hypertension. It also extends our knowledge of the mechanisms of reabsorption during the course of the pathology. In addition, a more complete understanding of the signaling pathway involved in increased Na absorption may lead to the development and design of specific drugs, which may contribute to decrease sodium retention during hypertension.

Sources of Funding

This work was supported in part by grants from the National Institutes of Health (HL 28982 and HL 70985) to J.L.G. and from the American Heart Association–Greater Midwest (0615718Z) to G.B.S.

Disclosures

None.

References

Angiotensin II–Dependent Hypertension Increases Na Transport-Related Oxygen Consumption by the Thick Ascending Limb
Guillermo B. Silva and Jeffrey L. Garvin

Hypertension. 2008;52:1091-1098; originally published online November 10, 2008;
doi: 10.1161/HYPERTENSIONAHA.108.120212
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2008 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/52/6/1091

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/