Determination of Travel Distance for Noninvasive Measurement of Pulse Wave Velocity: Case Closed?

To the Editor:

Carotid-femoral pulse wave velocity (cfPWV) is currently considered the gold-standard measurement for arterial stiffness.\(^1\) In clinical routine, noninvasive assessment is the only feasible method, whereas, for research purposes, catheter-based invasive determination, as well as MRI, may play a role. Precise determination of the distance traveled by the pulse wave is easily feasible with the latter 2 methods but has been a matter of debate for noninvasive techniques for the last few years.\(^1\) Therefore, we are pleased to find that absolute values for aortic pulse wave velocity, measured using MRI, were in good agreement with absolute cfPWV values, obtained by state-of-the-art noninvasive devices, in the study by Joly et al.\(^2\) Of note, pulse wave travel distance for noninvasive cfPWV assessment was measured by subtracting the distance from the carotid location to the suprasternal notch from the distance between this notch and the femoral site of measurement. This is in agreement with our recent invasive study\(^3\) in a similar age group (55.7 versus 60.3 years), where the same approach to travel distance estimation provided the closest similarity with invasive aortic pulse wave velocity, as measured during catheter withdrawal from the ascending aorta to the bifurcation. In contrast, the widely used method of direct carotid-femoral distance measurement resulted in an overestimation of cfPWV of 2 to 3 m/sec\(^3,4\) in comparison with invasive studies. We conclude that, for the purpose of standardization and comparability between different noninvasive devices, the method of subtracting the distance from the carotid location to the suprasternal notch from the distance between the suprasternal notch and the femoral site of measurement should be recommended for noninvasive cfPWV measurement. This would bring values into line with original\(^5\) and earlier methods\(^6\) which measured distance “in the line of wave travel” between recording sites.

Disclosures

M.F.O. is a funding director of AtCor medical, manufacturer of systems for pulse wave analysis and measurement of pulse wave velocity.

Hypertension, 2009;54:e137.
© 2009 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.109.139220

e137
Determination of Travel Distance for Noninvasive Measurement of Pulse Wave Velocity: Case Closed?
Thomas Weber, Martin Rammer, Bernd Eber and Michael F. O'Rourke

Hypertension. 2009;54:e137; originally published online September 21, 2009; doi: 10.1161/HYPERTENSIONAHA.109.139220
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2009 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/54/5/e137

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/