Abstract—The angiotensin (Ang) type 1 receptor (AT1R) is highly expressed on renal nuclei and stimulates reactive oxygen species (ROS). It is not known whether other functional components of the Ang system regulate the nuclear Ang II-AT1R ROS pathway. Therefore, we examined the expression of Ang receptors in nuclei isolated from the kidneys of young adult (1.5 years) and older adult (3.0 to 5.0 years) sheep. Binding studies in renal nuclei revealed the AT2R as the predominant receptor subtype (≈80%) in young sheep, with the Ang-(1-7) (AT7R; Mas protein) and AT1R antagonists competing for the remaining sites. Conversely, in older sheep, the AT1R accounted for ≈85% of nuclear sites, whereas the Ang type 2 receptor and AT7R subtypes comprise ≈20% of remaining sites. Ang II increased nuclear ROS to a greater extent in older (97±22%; n=6) versus young animals (7±2%; P=0.01; n=4), and this was abolished by an AT1R antagonist. The AT-R antagonist D-Ala7-Ang-(1-7) increased ROS formation to Ang II by ≈2-fold (174±5% versus 97±22%; P<0.05) in older adults. Immunoblots of renal nuclei revealed protein bands for the AT7R and angiotensin-converting enzyme 2 (ACE2), which metabolizes Ang II to Ang-(1-7). The ACE2 inhibitor MLN4760 also exacerbated the Ang II–dependent formation of ROS (156±15%) and abolished the generation of Ang-(1-7) from Ang II. We conclude that an ACE2-Ang-(1-7)-AT7R pathway modulates Ang II–dependent ROS formation within the nucleus, providing a unique protective mechanism against oxidative stress and cell damage. (Hypertension. 2010;55:166-171.)

Key Words: angiotensin ■ reactive oxygen species ■ kidney ■ angiotensin-(1-7) receptor ■ intracellular RAS

It is well-established that reactive oxygen species (ROS) play an important role as signaling molecules in a variety of cellular responses.1 Sustained perturbations in redox homeostasis can result in oxidative stress leading to cardiovascular damage and cellular injury. Angiotensin (Ang) II stimulates the generation of ROS through the Ang II type 1 (AT1) receptor isoform.2 Blockade of the renin-angiotensin-aldosterone system (RAAS) either by selective AT1 receptor antagonists or inhibition of the formation of Ang II by angiotensin-converting enzyme (ACE) inhibitors is the leading therapeutic approach to lower blood pressure and reduce tissue injury in various cardiovascular pathologies. A wealth of experimental evidence reveals that inhibition of the Ang II-generating axis of the RAAS is associated with a reduction in oxidative stress within the kidney and other tissues.3–6

The Ang II–dependent formation of ROS occurs by stimulating the assembly of the NAD(P)H (NOX) complex associated with the cell membrane. Chronic stimulation by Ang II also promotes the synthesis of several NOX components, including p22phox and p47phox, and attenuates the expression of various scavenging proteins within the cell, resulting in higher levels of intracellular ROS.2,7,8 Moreover, increased levels of ROS may stimulate the expression of components of the RAAS favoring Ang II, thus leading to a potentially vicious feedback loop that would exacerbate tissue injury.9 However, there are additional pathways within the RAAS that may functionally antagonize an activated Ang II-AT1 receptor pathway. One alternative product of the RAAS is the peptide Ang-(1-7), which is formed from either Ang I or Ang II.10 In contrast to the Ang II-AT1 receptor-mediated actions, Ang-(1-7) exhibits vasodilatory properties through the stimulation of NO or prostaglandins, stimulates natriuresis and diuresis, and conveys antifibrotic and antioxidant actions.10–12

The inflammatory, fibrotic, and pressor actions of Ang II are assumed to originate at the cell surface by activation of the AT1 protein, a prototypic 7-transmembrane, G-protein coupled receptor; however, we and others have found a significant density of intracellular AT1 receptors on isolated nuclei obtained from the renal cortex and medulla of both the

Received August 25, 2009; first decision September 24, 2009; revision accepted November 1, 2009.
From the Hypertension and Vascular Research Center (T.M.G., K.D.P., D.I.D., M.C.C.), Department of Microbiology and Immunology (S.D.R.), and Center for Perinatal Research, Department of Obstetrics and Gynecology (J.C.R.), Wake Forest University School of Medicine, Winston-Salem, N.C. Correspondence to TanYa M. Gwathmey, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157. E-mail tgwathm@wfubmc.edu
© 2009 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org
DOI: 10.1161/HYPERTENSIONAHA.109.141622

166
and the sheep. Indeed, we recently demonstrated Ang II-AT1 receptor–dependent stimulation of ROS in purified renal nuclei that was abolished by both protein kinase C (PKC) and phosphoinositol 3-kinase inhibitors. Although these findings suggest a functional Ang II-AT1 receptor pathway on renal nuclei, whether the nucleus exhibits alternative RAAS pathways that antagonize or modulate the actions of Ang II is not known. Therefore, the current studies examined the modulatory effects of Ang-(1-7) on Ang II–mediated ROS generation within renal nuclei.

Materials and Methods

Animals

Tissues were obtained from 4 young adult (1.5 years of age) and 6 older adult (3.0 to 5.0 years) female mixed-breed sheep that were pasture reared and then housed in the animal facility of Wake Forest University for 1 week before the study. Animals were synchronized by estrus cycles and maintained on a 12:12-hour light-dark cycle with access to food and water ad libitum. Kidney cortices were obtained fresh from animals anesthetized with ketamine and isoflurane and processed immediately for the isolation of the cortical nuclei. All of the procedures were approved by the institutional animal care and use committee at Wake Forest University School of Medicine.

Preparation of Nuclei

Cortical nuclei were prepared as described previously.

Characterization of Ang Receptors in Female Sheep Kidney

Ang receptor binding was performed as described previously. Briefly, isolated nuclei were suspended in HEPES buffer and coincubated with the radioligand [125I]-[Sar1Thr8]-Ang II in the presence of losartan (the AT1-receptor antagonist), D-Ala7-(Ang-

Western Blotting

Nuclei isolated from OptiPrep gradient separation were suspended in PBS and added to a Laemmli buffer containing mercaptoethanol. Proteins were separated on 10% SDS polyacrylamide gels and electrophoretically transferred onto polyvinylidene difluoride membranes. Immunoblots were blocked for 1 hour with 5% dry milk (Bio-Rad Laboratories) and Tris-buffered saline containing 0.05% Tween, then probed with antibodies against AT1 (1:5000; Alpha Diagnostics); the Ang-(1-7) receptor, Mas (1:200; Alomone Laboratories); the ACE2 (1:2000; prepared at the Hypertension and Vascular Research Center, No. AN212); NOX2 (goat pAb, 1:1000; BD Transduction Laboratories); and p47phox (1:200; Cell Signaling). To confirm specificity of the Mas receptor antibody, immunogenic Mas peptide was incubated (1 μg of peptide per 1 μg of antibody) in 1% BSA at room temperature for 1 hour and then added to immunoblots of purified nuclear extracts and incubated at 4°C overnight. Reactive proteins for all of the immunoblots were detected with Pierce Super Signal Chemiluminescent substrates and exposed to Amersham Hyperfilm enhanced chemiluminescence.

Measurement of ROS Production

Isolated cortical nuclei were preincubated with the fluorescence dye 5-(and-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate-acetyl ester (DCF; 20 μg/mL; Molecular Probes) in buffer containing 100 mmol/L of KH2PO4, 1 mmol/L of NaCl, 1 mmol/L of EGTA, 100 μmol/L of flavin-adenine dinucleotide, and 100 μmol/L of reduced nicotinamide-adenine dinucleotide (pH 7.4) for 30 minutes at 37°C. Nuclei were washed twice in HEPES buffer to remove any unbound dye and then incubated with 1 nmol/L of Ang II in the presence of losartan (the AT1-receptor antagonist), DALA (the Ang-[1-7]-receptor antagonist), PD123319 (the AT2-receptor antagonist), the ACE2 inhibitor MLN4760 (MLN) or buffer alone. Increases in DCF fluorescence, as an indicator of ROS production, were measured using a SpectraMax M2e microplate reader (Molecular Devices) at wavelengths of 488 nm (excitation) and 510 nm (emission).

Determination of ACE2 Activity

ACE2 enzymatic activity was determined in isolated cortical nuclei of an older adult sheep kidney. Nuclei were purified by OptiPrep density gradient separation and analyzed at 37°C in 10 mmol/L of HEPES, 125 mmol/L of NaCl, and 10 μmol/L of ZnCl2 (pH 7.4), with inhibitors, as described previously. Briefly, nuclei were coincubated with 0.5 mmol/L of iodinated [125I]-Ang I or [125I]-Ang II, washed with ice-cold 1.0% phosphoric acid and filtered before separation by reverse-phase, high-performance liquid chromatography.

Statistical Analysis

Data are represented as mean±SEM. Paired Student t test and 1-way ANOVA with Tukey multiple comparison posthoc and nonlinear regression were performed using GraphPad Prism 5.0 plotting and statistical software.

Results

We initially determined the profile of Ang receptor subtypes in nuclei freshly isolated from the renal cortex of younger and older adult female sheep by radioligand binding of the nonselective antagonist [125I]-[Sar1Thr8]-Ang II and competition with selective isotype antagonists. In 1.5-year-old sheep (equivalence of 200 to 250 years of human age), the AT2 antagonist competed for the greatest proportion of Ang binding sites in renal cortical nuclei (80±6% competition with PD123319), consistent with our previous results, whereas antagonists for the Ang-(1-7) receptor (AT1) and AT1 subtypes competed for (52±5% and 25±2%), respectively (Figure 1). Conversely, the AT1 isoform is the predominant receptor subtype (84±5% competition with losartan) in cortical nuclei isolated from older sheep (3 to 5 years or 45 to 60 years of human age). In comparison, both PD123319 (the AT2 subtype antagonist) and DALA (the AT1 receptor antagonist) competed to a similar extent (21±2% versus 21±1%) for [125I]-[Sar1Thr8]-Ang II binding.

We next assessed the generation of ROS in response to Ang II in freshly isolated cortical nuclei from both younger and older adult female sheep using the fluorescent dye DCF. As shown in the fluorescent tracing of Figure 2A, Ang II (1 nmol/L) stimulated a sustained increase in DCF fluorescence over control nuclei (buffer alone) from older sheep that was abolished by the NADPH oxidase inhibitor diphenyleneiodonium chloride (10 μmol/L). Basal level ROS production in older adult sheep was 7.3-fold higher than that of young adult sheep (P<0.01; data not shown). Moreover, in Figure 2B, Ang II stimulated the DCF signal to a greater extent in the cortical nuclei isolated from the older sheep in comparison with the young adult sheep (97±22% versus 7±1%; P<0.05;
In the older sheep, diphenyleneiodonium chloride abolished the increase in DCF fluorescence to a similar extent as that of DALA (174 ± 5%; n = 6). Similar to the response to Ang II, the PKC agonist phorbol 12-myristate 13-acetate (PMA; 1 μmol/L) also increased DCF fluorescence to a greater extent in the nuclei isolated from the older animals (Figure 2B).

To assess whether NOX components are expressed in the sheep nuclei, we performed Western blot analysis on purified nuclear extracts from the renal cortex of older animals. In the blot of Figure 2C, we show a single immunoreactive band at ≈80 kDa for gp91phox (NOX2), a membrane-bound glycoprotein component of the NAD(P)H oxidase complex that functions in electron transport. Moreover, we demonstrate doublet bands of 47 and 50 kDa for p47phox, the cytosolic subunit of the NOX2 complex that is required for activation of NOX2. To identify the Ang receptor subtypes that elicit the formation of ROS, we preincubated DCF-loaded nuclei from younger and older sheep with losartan, PD, PD123319, or DALA (1 nM) for 20 minutes. The addition of the Ang II or Ang-(1-7) receptor antagonists (LOS indicates losartan; PD, PD123319) or unlabeled Sarthran at a final concentration of 10 μmol/L. Data are expressed as mean ± SEM (n = 4; *P < 0.05 vs young).

In purified nuclei from the sheep renal cortex, immunoblots reveal the presence of the AT1/Mas receptor protein (Figure 4A). Preincubation of the immunoblot with the Mas peptide blocked this immunoreactive band. Western blot analysis of purified nuclei also revealed a single 120-kDa band for ACE2 (Figure 4A). Lastly, we demonstrate ACE2 activity in purified nuclei by the conversion of 125I-Ang II to 125I-Ang-(1-7) (17 ± 4 fmol · min⁻¹ · mg of protein⁻¹; n = 3). Nuclear ACE2 activity was abolished by the ACE2 inhibitor MLN (Figure 4B) but not by the addition of the DALA peptide (Figure 4C).

Discussion

Evidence for the intracellular expression of the RAAS within the kidney is becoming increasingly apparent, particularly the
functional expression of the AT₁ receptor on the cell nucleus.²²–²⁴ We reported previously that the AT₁ receptor stimulates ROS formation in isolated nuclei of the rat renal cortex.¹⁴ In contrast, nuclei prepared from the renal cortex of young adult sheep expressed primarily the AT₂ receptor subtype, which is functionally linked to the generation of NO.¹⁵ The present studies demonstrate age-dependent changes in Ang receptors where an increase in AT₁ and a corresponding decrease in AT₂ and AT₇ receptor subtypes are apparent in renal nuclei of older adult sheep. Associated with increased AT₁ receptor expression, ROS levels after Ang II or PMA stimulation were significantly higher in the nuclei obtained from the kidneys of the older sheep. Moreover, blockade of the AT₁ receptor or ACE2 enhanced the Ang II–dependent stimulation of ROS. Levels after Ang II or PMA stimulation were significantly higher in the nuclei obtained from the kidneys of the older sheep. Moreover, blockade of the AT₁ receptor or ACE2 enhanced the Ang II–dependent stimulation of ROS. In the presence of the AT₁ receptor antagonist, ROS formation was attenuated. Indeed, these data support previous findings that exogenous Ang-(1-7) attenuates either Ang II- or hyperglycemic-induced increases in ROS.²⁵,²⁶

The binding studies in isolated nuclei revealed a shift in the Ang receptor profile from the AT₂ and AT₇ subtypes to the AT₁ isoform with age. The AT₂ antagonist PD123319 enhanced Ang II stimulation of ROS, whereas the AT₇ antagonist had no effect in younger animals. The PD compound may shunt more Ang II to the AT₁ receptor or inhibit an AT₂ receptor–dependent pathway that normally attenuates ROS, particularly given the predominance of the AT₂ subtype at the younger age. In older animals, the AT₇ antagonist DALA, but not PD12319, enhanced the Ang II–AT₁ effect on ROS despite the similar extent of competition for Sarthran binding with both antagonists. In this case, the AT₂ receptor may no longer be functionally coupled to attenuate AT₁-dependent stimulation of ROS in older animals. Ang-(1-7), formed by ACE2 processing of Ang II, may preferentially bind to the
by guest on July 12, 2017 http://hyper.ahajournals.org/ Downloaded from

lagher et al demonstrated that Ang-(1-7) stimulated a
the increased expression of the AT1 receptor subtype.
animals, the enhanced ROS response to Ang II likely reflects
ation in Ang receptor subtypes in renal nuclei of older
the current studies what mechanism contributes to the alter-
which may reflect an increase in PKC in the cortical nuclei.
block the Ang II response with PKC inhibitors or to deter-
nuclear actions of Ang II on ROS production is likely mediated by the direct actions of
Ang-(1-7) on nuclear AT1 receptors.
The pathways that mediate the AT1-dependent stimulation of
ROS or the attenuation of this effect by Ang-(1-7) within
the nucleus are not known. We initially reported the func-
tional involvement of both PKC and phosphoinositol 3-kinase
in ROS generation by Ang II in rat renal nuclei consistent with studies in intact cells on ROS formation, as well as
evidence for a phospholipid signaling pathway within the nucleus.

The increase in ROS with the PKC agonist PMA
in sheep nuclei suggests that PKC may contribute to the
nuclear actions of Ang II, although we did not attempt to
block the Ang II response with PKC inhibitors or to determine
whether the effects of PMA and Ang II are additive.

PMA responsiveness was also greater in the older animals,
which may reflect an increase in PKC in the cortical nuclei.

Asghar et al reported that older Fisher 344 rats express
higher levels of PKC-β and PKC-δ in the kidney cortex.
Moreover, these investigators found that chronic antioxidant
treatment reduces the elevated PKC activity in the proximal
tubules of the older rat kidney. Although it is not clear from
the current studies what mechanism contributes to the alter-
ation in Ang receptor subtypes in renal nuclei of older
animals, the enhanced ROS response to Ang II likely reflects
the participation of additional pathways in conjunction with
the increased expression of the AT1 receptor subtype.

With regard to Ang-(1-7), exogenous treatment with this
peptide reduced the increase in ROS and phosphorylation of
c-Src kinase by Ang II in intact endothelial cells. The
Ang-(1-7)–dependent reduction in ROS was associated with
an increase in the interaction of Src homology protein, SHP-2
phosphatase with c-Src. Moreover, knockdown of SHP-2
abolished the inhibitory influence of Ang-(1-7). In LLC-PK
proximal tubule cells, Ang-(1-7) reduced both mitogen-acti-
vated protein kinase activation and the increase in transform-
ing growth factor β in response to high glucose conditions.

The Ang-(1-7) response in the proximal tubule cells was
associated with an increase in the tyrosine phosphatase
SHP-1, and the phosphatase inhibitor phenylarsine oxide
reversed the inhibitory actions of Ang-(1-7). Finally, Gall-
lagher et al demonstrated that Ang-(1-7) stimulated a
mitogen-activated protein kinase phosphatase that prevented
the downregulation of ACE2 by Ang II in cardiomyocytes.
In lieu of these data in intact cells, we speculate that the acute
response to the Ang-(1-7) antagonist or the ACE2 inhibitor
may involve a reduction in “phosphatase tone” that would
normally attenuate the kinase-dependent Ang II activation of
ROS, because various phosphatases have been shown to
localize to the cell nucleus. Alternatively, our preliminary
studies demonstrate that Ang-(1-7) stimulates nuclear pro-
duction of NO, which may contribute to its capacity to buffer
Ang II–induced ROS. However, the identity of the nuclear
pathway responsible for the inhibitory actions of Ang-(1-7) is
not currently known and is the focus of ongoing investigation.

The present studies provide evidence for the expression of
an ACE2-Ang-(1-7)-AT1 receptor pathway on nuclei of the
sheep kidney. One potential function of this pathway may be
to attenuate the activity of the Ang II-AT1 receptor axis and
the accumulation of ROS within the nuclear environment.
In the perfused kidney and LLC-PK cells, Ang II–induced DNA
damage was attenuated by AT1 receptor blockade, as well as
the antioxidants N-acetyl cysteine and α-tocopherol.

Associated with the increase in DNA damage, Ang II increased
intracellular DCF fluorescence 2-fold, which is similar to the
increase in fluorescence observed in the present study,
although the Ang II concentration in the intact cells was
170-fold greater than that used in the nuclei.

Moreover, treatment with exogenous H2O2, the primary ROS detected
by DCF, increased DNA damage to a similar extent as that for
Ang II in the proximal tubule cells. Although mitochondria
are considered the predominant source of cellular ROS,
the localized increase in ROS within the cell nucleus could
ten potentially contribute to Ang II–dependent DNA damage
and cell senescence. The exact role(s) of the nuclear RAAS
in cellular damage and senescence is not currently known.
Indeed, further studies are required to determine whether
certain transcriptional factors are upregulated in response to
activation of the nuclear Ang receptors. However, evidence
for reduced tissue levels of Ang-(1-7) with increasing age
may mitigate the counterregulatory actions of the heptapep-
tide on Ang II–mediated ROS within the nuclear compart-
ment of the cell.

Perspectives

Long-term blockade of the RAAS by ACE inhibitors or AT1
receptor antagonists reduces oxidative stress and deters age-
associated cellular or tissue damage. Indeed, AT1 recep-
tor–deficient mice exhibit a 20% increase in life span
associated with reduced tissue levels of nitrotyrosine.

In addition to inhibiting the Ang II-AT1 receptor axis, RAAS
blockade with ACE inhibitors or receptor antagonists
increases the levels of Ang-(1-7). The present studies suggest
that the activation of the intracellular ACE2-Ang-(1-7)-AT1
receptor may constitute a pathway to convey additional
therapeutic benefit in the treatment of cardiovascular disease.

Acknowledgments

We thank Brian Westwood and Nancy Pirro for their expert technical
assistance in these studies. We especially thank Dr Kathryne Stabile,
Department of Orthopedic Surgery, for donation of animal tissue.

Sources of Funding

This work was supported by grants from the National Institutes
of Health (HD17644, HD47584, HL-56973, HL51952, HL-56972,
and RR018370), as well as unrestricted grants from the Unifi
Corporation (Greensboro, NC) and the Farley-Hudson Foundation
(Jacksonville, NC).

Disclosures

None.

References

1. Bedard K, Krause KH. The NOX family of ROS-generating NADPH oxi-

dases: physiology and pathophysiology. Physiol Rev. 2007;87:245–313.

2. Garrido AM, Griendling KK. NADPH oxidases and angiotensin II reci-

3. Wolf G. Role of reactive oxygen species in angiotensin II-mediated renal

growth, differentiation, and apoptosis. Antioxid Redox Signal. 2005;7:

1337–1345.

4. Lopez-Real A, Rey P, Soto-Otero R, Mendez-Alvarez E, Labandeira-

Garcia JL. Angiotensin-converting enzyme inhibition reduces oxidative

stress and protects dopaminergic neurons in a 6-hydroxydopamine rat

5. Khaper N, Singal PK. Modulation of oxidative stress by a selective

inhibition of angiotensin II type 1 receptors in MI rats. Am J Cardiol.

2001;87:1461–1468.

Acute antihypertensive action of Tempol in the spontaneously hyper-

7. Touyz RM, Schiffrin EL. Reactive oxygen species and hypertension: a

8. Li JM, Shah AM. Mechanism of endothelial cell NADPH oxidase activa-

278:12904–12910.

II production in diabetic rats is correlated with cardiomyocyte apoptosis,

10. Chappell MC. Emerging evidence for an ACE2-Ang-(1-7)-Mas receptor

11. Ferrario CM. Angiotensin-converting enzyme 2-angiotensin (1-7)-Mas

12. Pendergrass KD, Averill DB, Ferrario CM, Diz DJ, Chappell MC. Dif-

ferential expression of nuclear AT1 receptors and angiotensin II within

the kidney of the male congenic mRen2.Lewis rat. Am J Physiol Renal

Physiol. 2006;290:F4197–F4106.

13. Pendergrass KD, Gwathmey TM, Michalek RD, Grayson JM, Chappell MC. The

angiotensin II-AT1 receptor stimulates reactive oxygen species within

14. Sampaio WO, Henrique de CC, Santos RA, Schiffrin EL, Touyz RM. Angiotensin-

(1-7) counterregulates angiotensin II signaling in human endothelial cells.

prevents activation of NADPH oxidase and renal vascular dysfunction in diabeti-

Gava E, Castro CH, Magalhaes JA, da Mota RK, Botelho-Santos GA, Bader M, Alenina N, Santos RA, Simoes e Silva AC. Genetic deletion of the

angiotensin-(1-7) receptor Mas leads to glomerular hyperfiltration and microalbuminuria. Kid Int. 2009;75:1184–1193.

17. Deleris P, Gayral S, Breton-Douillon M. Nuclear PtdIns(3,4,5)P3 sig-

19. Neri LM, Borgetti P, Capitani S, Martelli AM. The nuclear phosphoino-

sitide 3-kinase/ATK pathway: a new second messenger system. Biochim

26. Gwathmey TM, Pendergrass KP, Rose JC, Diz DJ, Chappell MC. Nuclear

28. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atheroscle-

29. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular

30. Sakima A, Averill DB, Gallagher PE, Kasper SO, Tommasi EN, Ferrario CM, Diz DJ. Impaired heart rate baroreflex in older rats: role of endog-

35. Ben-Porath I, Weinberg RA. The signals and pathways activating cellular

36. Sakima A, Averill DB, Gallagher PE, Kasper SO, Tommasi EN, Ferrario CM, Diz DJ. Impaired heart rate baroreflex in older rats: role of endog-

Angiotensin-(1-7)-Angiotensin-Converting Enzyme 2 Attenuates Reactive Oxygen Species Formation to Angiotensin II Within the Cell Nucleus
TanYa M. Gwathmey, Karl D. Pendergrass, Sean D. Reid, James C. Rose, Debra I. Diz and Mark C. Chappell

Hypertension. 2010;55:166-171; originally published online November 30, 2009; doi: 10.1161/HYPERTENSIONAHA.109.141622

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/55/1/166

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/