Is Arterial Stiffness Related to Body Height?

To the Editor:

Experts consider aortic pulse wave velocity (PWV) as the supreme index of arterial stiffness, mainly because it is an independent predictor of cardiovascular complications. However, the noninvasive assessment of PWV is critically dependent on the measurement of the travel distance of the arterial pulse wave. Variability between estimates of PWV largely depends on inconsistencies in the measured travel distance. Travel distance is proportional to body height. This explains the inverse association between PWV and body height. In a recent publication in Hypertension, Wang et al recognized the problem and adjusted the hazard ratios expressing the risk of death related to a pulse wave reflection index for body height.

The Colin VP-1000 (Omron Healthcare) is easy to operate and is used for risk stratification, in particular in Japan and China. This device measures brachial-ankle PWV (baPWV) by means of an automated wave form analyzer. In 200 subjects (51.5% women; mean age: 51.3 years; age range: 20 to 80 years) recruited in the framework of the Flemish Study on Environment Genes and Health Outcomes, we observed a strong inverse association between PWV and body height (Table). Nevertheless, cfD (r=0.41), nD (r=0.56), and cnD (r=0.43) were all closely correlated (P<0.0001) with body height, highlighting that even the best index of arterial stiffness not only depends on the characteristics of the elastic aorta and subclavian arteries and the muscular brachial, femoral, and tibial arteries.

In the same Flemish Study on Environment Genes and Health Outcomes participants, we also measured aortic PWV from the length of the carotid-femoral segment and the transit time of the pulse wave. The carotid-femoral segment (cFD) was the distance between the suprasternal notch and the site of the femoral measurement (nFD) minus the distance between the site of the carotid measurement and the suprasternal notch (cnD). We measured these distances using a measuring tape. Thus, for aortic PWV, travel distance was not extrapolated from height. In contrast to baPWV, aortic PWV was not significantly correlated with body height (Table). Nevertheless, cFD (r=0.41), nFD (r=0.56), and cnD (r=0.43) were all closely correlated (P<0.0001) with body height, highlighting that even the best index of arterial stiffness not only depends on the characteristics of the measured arterial segment.

We also measured the central and peripheral systolic augmentation indices. We used a high-fidelity SPC-301 micromanometer (Millar Instruments, Inc) interfaced with a laptop computer running the SphygmoCor software, version 7.1 (AtCor Medical Pty Ltd). Measurement of the systolic augmentation indices does not involve travel distance. Nevertheless, in line with our previous study of a Chinese population, we noticed a significant inverse association between systolic augmentation and body height (Table), which can be easily explained by the faster return of the reflected wave in shorter people.

In conclusion, travel distance remains a major problem in the standardization and interpretation of PWV as the favored index of arterial stiffness. The inverse association between PWV and height is overestimated if travel distance is extrapolated from height. For the same height, aortic PWV reflects only arterial stiffness, but if height is dissimilar PWV reflects both arterial properties and the difference in stature. We suggest that PWV be expressed standardized to height (and heart rate) and that analyses involving PWV as the explanatory variable should be adjusted for body height (and heart rate), as done recently by Wang et al.

Disclosures

None.

Yan-Ping Liu
Department of Ultrasonography
Ruijin Hospital, Shanghai Jiaotong University School of Medicine
Shanghai, China

Studies Coordinating Centre
Division of Hypertension and Cardiovascular Rehabilitation
Department of Cardiovascular Diseases
University of Leuven
Leuven, Belgium

Tom Richart
Studies Coordinating Centre
Division of Hypertension and Cardiovascular Rehabilitation
Department of Cardiovascular Diseases
University of Leuven
Leuven, Belgium

Department of Epidemiology
Maastricht University
Maastricht, The Netherlands

Table. Association of Various Indices of Arterial Stiffness With Body Height

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>All Subjects</th>
<th>Women</th>
<th>Men</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of subjects</td>
<td>200</td>
<td>103</td>
<td>97</td>
</tr>
<tr>
<td>Brachial-ankle PWV, cm/s per cm</td>
<td>−5.39±2.00*</td>
<td>−16.21±4.51†</td>
<td>−14.88±2.82†</td>
</tr>
<tr>
<td>Carotid-femoral PWV, cm/s per cm</td>
<td>1.10±1.32</td>
<td>−2.70±2.36</td>
<td>−2.10±2.51</td>
</tr>
<tr>
<td>Central AI, %/cm</td>
<td>−1.26±0.18†</td>
<td>−1.48±0.36†</td>
<td>−1.24±0.37*</td>
</tr>
<tr>
<td>Peripheral AI, %/cm</td>
<td>−1.01±0.15†</td>
<td>−1.31±0.29†</td>
<td>−1.05±0.30†</td>
</tr>
</tbody>
</table>

*P<0.05 indicates significance of the regression coefficient.
†P<0.0001 indicates significance of the regression coefficient.

© 2010 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.110.152553

(Hypertension. 2010;55:e24-e25.)
Yan Li
Center for Epidemiologic Studies and Clinical Trials and
Center for Vascular Evaluation
Ruijin Hospital
Shanghai Jiaotong University School of Medicine
Shanghai, China

Wei-Wei Zhan
Department of Ultrasonography
Ruijin Hospital, Shanghai Jiaotong University School of
Medicine
Shanghai, China

Jan A. Staessen
Studies Coordinating Centre
Division of Hypertension and Cardiovascular Rehabilitation
Department of Cardiovascular Diseases
University of Leuven
Leuven, Belgium
Department of Epidemiology
Maastricht University
Maastricht, The Netherlands

References

1. Laurent S. Surrogate measures of arterial stiffness: do they have additive predictive value or are they only surrogates of a surrogate? Hypertension. 2006;47:325–326.

Is Arterial Stiffness Related to Body Height?
Yan-Ping Liu, Tom Richart, Yan Li, Wei-Wei Zhan and Jan A. Staessen

Hypertension. 2010;55:e24-e25; originally published online April 12, 2010;
doi: 10.1161/HYPERTENSIONAHA.110.152553

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/55/6/e24

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at: http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at: http://hyper.ahajournals.org//subscriptions/