Influence of Changes in Blood Pressure on Cerebral Oxygenation: Role of Skin Blood Flow?

To the Editor:

We read with interest the report from Lucas et al \(^1\) in the recent issue of *Hypertension*. We agree with the findings presented on cerebral blood flow with transcranial ultrasound Doppler, but we propose an alternative interpretation of the cerebral oxygenation data. As pointed out by the authors, at rest and under normal conditions, near-infrared spectroscopy (NIRS) monitors cerebral oxygenation faithfully. Also, current NIRS devices are spatially resolved and should distinguish between the differences in absorption of photons returning from deep rather than superficial tissue. Thus, their findings may, as noted, be explained by cerebral vasoconstriction or dilation introduced by the pharmaceutical agents. This is, however, debated, and little evidence suggests a direct role of nitroprusside or phenylephrine on the cerebral vasculature,\(^2\) although it cannot be ruled out. On the other hand, changes in skin blood flow are significant to the NIRS signal. Davis et al \(^3\) report that the NIRS-derived oxygenation obtained over the vastus lateralis muscle varies in direct proportion to laser Doppler-derived skin blood flow under conditions where muscle blood flow is not expected to change. Their findings strongly imply that, even with spatial resolved NIRS, changes in skin blood flow influence the NIRS signal. Therefore, manipulation of mean arterial pressure and, in turn, cerebral perfusion pressure with nitroprusside or phenylephrine may inadvertently influence NIRS measurements of cerebral oxygenation, because it well known that these agents affect skin blood flow directly.\(^4,5\) Nitroprusside has been shown to increase skin blood flow,\(^4\) whereas phenylephrine decreases skin blood flow.\(^5\) As light emitted from the NIRS device travels through the skin, these findings may directly explain the seemingly puzzling differences in the response to pharmaceutical-induced changes in mean arterial pressure between cerebral oxygenation and blood flow findings.\(^1\) We, therefore, propose that future studies examining cerebral oxygenation involving vasopressor or dilator agents quantify skin blood flow for interpretation of the data.

Sources of Funding

P.R. and C.L. were supported by the Zurich Centre for Integrative Human Physiology.

Disclosures

None.

Peter Rasmussen
Carsten Lundby
Zurich Centre for Integrative Human Physiology
University of Zurich
Zurich, Switzerland

Influence of Changes in Blood Pressure on Cerebral Oxygenation: Role of Skin Blood Flow?

Peter Rasmussen and Carsten Lundby

Hypertension. 2010;56:e1; originally published online June 1, 2010;
doi: 10.1161/HYPERTENSIONAHA.110.153445

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/56/1/e1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/