Response to Indices of Blood Pressure Variability and Cardiovascular Risk

We reported that, with the 24-hour blood pressure level in the multivariable-adjusted Cox models, average real variability over 24 hours (ARV24) added only 0.1% to the explained risk of a composite cardiovascular end point.1 Pierdomenico2 requested a similar analysis for the SD over 24 hours weighted for the time interval between consecutive readings (SD24) and the average of the daytime and nighttime intervals (SDdn). Results for adding to the basic Cox model first the 24-hour blood pressure alone and next the 24-hour blood pressure plus SD24, SDdn, or ARV24 appear in the Table. In line with our findings for ARV24, adding SD24 or SDdn did not or only weakly improved the risk stratification already provided by the 24-hour blood pressure.

Figure 3 of our article1 emphasizes that the relative contribution of the 24-hour blood pressure level to the 10-year absolute cardiovascular risk was substantially greater than that of ARV24, which in our hands best captured blood pressure variability. In the last sentence of our article’s Perspectives section,1 we made the point that both ARV24 and SDdn are useful measures of blood pressure variability but not SD24. A major problem is that SD24 also reflects the day-night blood pressure difference. Pierdomenico et al3 and other investigators1,4 demonstrated that, for the same SD in distinct blood pressure recordings, ARV24 can be widely different.

Table. Risk of a Composite Cardiovascular Event Explained in Cox Regression

<table>
<thead>
<tr>
<th>Models</th>
<th>Systolic Blood Pressure</th>
<th>Diastolic Blood Pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Likelihood Ratio</td>
<td>P</td>
</tr>
<tr>
<td>Basic model*</td>
<td>10 307.0</td>
<td>9.95</td>
</tr>
<tr>
<td>+ 24-h blood pressure</td>
<td>10 213.4</td>
<td><0.001</td>
</tr>
<tr>
<td>+ 24-h blood pressure and SD24</td>
<td>10 212.1</td>
<td>0.25</td>
</tr>
<tr>
<td>+ 24-h blood pressure and SDdn</td>
<td>10 211.2</td>
<td>0.14</td>
</tr>
<tr>
<td>+ 24-h blood pressure ARV24</td>
<td>10 209.4</td>
<td>0.046</td>
</tr>
</tbody>
</table>

P values are for the improvement of the fit across nested models. *The basic Cox model was stratified for cohort and included as covariables sex, age, 24-hour heart rate, body mass index, smoking and drinking, serum total cholesterol, history of cardiovascular disease, diabetes mellitus, and treatment with antihypertensive drugs.

Sources of Funding
The European Union (grants IC15-CT98-0329-EPOGH, LSHM-CT-2006-037093, and HEALTH-F4-2007-201550), The Fonds voor Wetenschappelijk Onderzoek Vlaanderen (Ministry of the Flemish Community, Brussels, Belgium) (grants G.0575.06 and G.0734.09), and the Katholieke Universiteit Leuven (grants OT/00/25 and OT/05/49) gave support to the Studies Coordinating Centre in Leuven.

Disclosures
None.

Tine W. Hansen
Copenhagen University Hospital
Copenhagen, Denmark

Lutgarde Thijs
Department of Cardiovascular Diseases
University of Leuven
Leuven, Belgium

Yan Li
Shanghai Jiaotong University School of Medicine
Shanghai, China

José Boggia
Universidad de la República
Montevideo, Uruguay

Tom Richart
Jan A. Staessen
Department of Cardiovascular Diseases
University of Leuven
Leuven, Belgium
Department of Epidemiology
Maastricht University
Maastricht, The Netherlands

Response to Indices of Blood Pressure Variability and Cardiovascular Risk
Tine W. Hansen, Lutgarde Thijs, Yan Li, José Boggia, Tom Richart and Jan A. Staessen

Hypertension. 2010;56:e22; originally published online June 21, 2010;
doi: 10.1161/HYPERTENSIONAHA.110.155515

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/56/2/e22

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/