Dopamine Receptors

Important Antihypertensive Counterbalance Against Hypertensive Factors

Chunyu Zeng, Pedro A. Jose

Essential hypertension, which affects 25% of the middle-aged adult population, constitutes a major risk factor for stroke, myocardial infarction, and heart and kidney failure.1 The kidney, vasculature, and nervous system govern the long-term control of blood pressure by regulating sodium homeostasis and peripheral resistance; they, in turn, are influenced by numerous hormones and neural and humoral factors. These hormones and neural and humoral factors can be divided into 2 groups based on their effects on sodium excretion and vascular smooth muscle contractility. One group leads to natriuresis and vasodilatation whereas the other causes sodium retention and vasoconstriction. The balance between those 2 groups keeps the blood pressure within the normal range. Hypertension may be caused not only by increased activity of prohypertensive systems (for example, the renin-angiotensin system [RAS] and sympathetic nervous system) but also by defects in antihypertensive systems that serve as counterregulatory mechanisms. Aberrations in these counterregulatory pathways, which include the dopaminergic pathway, may be involved in the pathogenesis of essential hypertension.

Dopamine has been shown to be an important regulator of renal and hormonal function and, ultimately, blood pressure, through an independent, nonneural dopaminergic system.2 There is a difference in the synthesis and metabolism of dopamine in neural and nonneural cells (see following paragraphs). For example, dopamine synthesized in renal proximal tubule (RPT) cells is not converted into norepinephrine and epinephrine; it is transported across the basolateral and apical membranes and into the peritubular space and tubular lumen, respectively, where it acts on its receptors locally and in more distal nephron segments. Dopamine, by occupation of its specific receptors as well by direct or indirect interaction with other G protein–coupled receptors (for example, adenosine, angiotensin, endothelin, insulin, oxytocin, and vasopressin) and interaction with other hormones/humoral agents (for example, aldosterone, angiotensins, atrial natriuretic peptide, eicosanoids, insulin, nitric oxide, prolactin, and urodilatin) regulates water and NaCl excretion.3,4 During normal or moderately increased NaCl intake, inhibition of D1-like receptors decreases NaCl excretion by ≈60%. In hypertensive states, the dopamine-mediated inhibition of sodium transport is often impaired. Although dopamine production is diminished in a few specific hypertensive states, this is not usually the case. Indeed, renal dopamine production is increased in young hypertensive patients. This review updates the role of dopamine and its receptors in the control of normal blood pressure and in the pathogenesis of hypertension. We will provide evidence that dopamine and its receptors act as an important antihypertensive counterbalance against the prohypertensive effects of the α-adrenergic system and RAS.

Dopamine and Its Receptors in Hypertension

Dopamine Synthesis and Blood Pressure Regulation

Dopamine, produced locally and independently of innervation, is important in the control of systemic blood pressure. This blood pressure regulation is achieved by actions on systemic arterial and venous vessels, renal hemodynamics, and water and electrolyte balance, by direct and indirect effects on renal and gastrointestinal epithelial ion transport.2 The affinity of dopamine for its receptors is in the nanomolar to low micromolar range. Normal circulating concentrations of dopamine (picomolar range) are not sufficiently high to activate dopamine receptors, but concentrations in the high nanomolar to low micromolar range can be attained in dopamine-producing tissues (both neural and nonneural, such as the RPT and jejunum).

The synthesis of dopamine differs between neural and epithelial cells (Figure 1). Neural cells, unlike RPT cells, express tyrosine hydroxylase, which converts tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), the immediate precursor of dopamine. RPT cells do not express tyrosine hydroxylase and therefore, cannot produce L-DOPA; filtered or peritubular L-DOPA has to be transported into the RPT graphs). For example, dopamine synthesized in renal proximal tubule (RPT) cells is not converted into norepinephrine and epinephrine; it is transported across the basolateral and apical membranes and into the peritubular space and tubular lumen, respectively, where it acts on its receptors locally and in more distal nephron segments. Dopamine, by occupation of its specific receptors as well by direct or indirect interaction with other G protein–coupled receptors (for example, adenosine, angiotensin, endothelin, insulin, oxytocin, and vasopressin) and interaction with other hormones/humoral agents (for example, aldosterone, angiotensins, atrial natriuretic peptide, eicosanoids, insulin, nitric oxide, prolactin, and urodilatin) regulates water and NaCl excretion.3,4 During normal or moderately increased NaCl intake, inhibition of D1-like receptors decreases NaCl excretion by ≈60%. In hypertensive states, the dopamine-mediated inhibition of sodium transport is often impaired. Although dopamine production is diminished in a few specific hypertensive states, this is not usually the case. Indeed, renal dopamine production is increased in young hypertensive patients. This review updates the role of dopamine and its receptors in the control of normal blood pressure and in the pathogenesis of hypertension. We will provide evidence that dopamine and its receptors act as an important antihypertensive counterbalance against the prohypertensive effects of the α-adrenergic system and RAS.

Dopamine and Its Receptors in Hypertension

Dopamine Synthesis and Blood Pressure Regulation

Dopamine, produced locally and independently of innervation, is important in the control of systemic blood pressure. This blood pressure regulation is achieved by actions on systemic arterial and venous vessels, renal hemodynamics, and water and electrolyte balance, by direct and indirect effects on renal and gastrointestinal epithelial ion transport.2 The affinity of dopamine for its receptors is in the nanomolar to low micromolar range. Normal circulating concentrations of dopamine (picomolar range) are not sufficiently high to activate dopamine receptors, but concentrations in the high nanomolar to low micromolar range can be attained in dopamine-producing tissues (both neural and nonneural, such as the RPT and jejunum).

The synthesis of dopamine differs between neural and epithelial cells (Figure 1). Neural cells, unlike RPT cells, express tyrosine hydroxylase, which converts tyrosine into L-3,4-dihydroxyphenylalanine (L-DOPA), the immediate precursor of dopamine. RPT cells do not express tyrosine hydroxylase and therefore, cannot produce L-DOPA; filtered or peritubular L-DOPA has to be transported into the RPT cells via the Na⁺-independent and pH-sensitive types 1 and 2 L-type amino acid transporter, related to the b⁰,+ amino acid transporter, and as-yet-unidentified transporters.5,6 Unlike neural cells, RPT cells do not express dopamine β-hydroxylase, so synthesized dopamine is not converted to norepinephrine.2
Dopamine produced in RPT cells is not stored. It enters the peritubular space and the tubular lumen (predominantly the latter), where it acts on its receptors locally and in more distal nephron segments.

Decreased renal synthesis of dopamine may be involved in the pathogenesis of essential hypertension in some human subjects. Some black and Japanese salt-sensitive subjects, with or without hypertension, do not increase renal dopamine production in response to an NaCl or protein load. However, urinary dopamine and dopamine metabolites are actually increased in young subjects with essential hypertension and in white Europeans with borderline hypertension. Renal dopamine synthesis is also increased in the Dahl salt-sensitive (Dahl-SS) rat and the spontaneously hypertensive rat (SHR). Inhibition of renal dopamine synthesis accelerates the development of hypertension in SHRs. However, increasing renal dopamine production in SHRs does not lower their blood pressures or inhibit renal cortical sodium hydrogen exchanger type 3 (NHE3) activity, as is observed in Wistar-Kyoto (WKY) rats, and does not increase sodium excretion to the same degree as that observed in WKY rats. Therefore, decreased renal production of dopamine does not explain the impaired function of endogenous renal dopamine in many cases of hypertension. The increase in urinary dopamine levels in early hypertension may represent an attempt to compensate for the renal dopamine receptor defect.

Dopamine Receptors in Health and Hypertension

Dopamine receptors are classified into the D1- and D2-like receptor subtypes, based on their molecular structure and pharmacology. D1-like receptors, composed of D1 and D5 receptors, stimulate adenyl cyclase activity, whereas D2-like receptors, composed of D2, D3, and D4 receptors, inhibit adenyl cyclase activity and regulate/modulate the activity of several ion channels. In this review, the term “D1-like receptor” is used when the effect is not specifically attributable to the D1 or D2 receptor, and the term “D2-like receptor” is used when the effect is not specifically attributable to the D2, D3, or D4 receptor. This is particularly apt for D2-like receptors, because no commercially available drugs can distinguish the D1 from the D2 receptor.

The normal circulating levels of dopamine are too low to stimulate vascular dopamine receptors, and vascular smooth muscle cells do not synthesize dopamine. Because the direct vascular effect of dopamine is not important in the normal regulation of blood pressure, the contribution of arterial dopamine receptors to hypertension is not discussed.

Renal D1-Like Receptors

Physiologic Role of D1-Like Receptors

As stated earlier, during normal or moderately increased NaCl intake, dopamine, by direct or indirect interaction with other hormones/humoral agents, regulates NaCl excretion. In salt-loaded dogs and rats, the systemic or renal arterial infusion of the D1-like receptor antagonist SCH-23390 decreases sodium excretion by ≈60%. Long-term administration of the long-acting D1-like receptor antagonist, ecopipam, in humans increases blood pressure. The differential contribution of D1 and D2 receptors in this process remains to be determined. Preliminary data suggest that the D2 receptor is expressed preferentially over the D1 receptor in the thick ascending limb of Henle and the cortical collecting duct, whereas the D1 receptor is expressed preferentially over the D2 receptor in the proximal tubule. Indeed, in RPT cells, 70% of the cAMP generated after D1-like receptor stimulation is due to the D1 receptor. Therefore, the D1 receptor function is exerted preferentially over the D2 receptor in the proximal nephron, whereas the converse is true in the distal nephron.

The infusion of D1 receptor antisense oligodeoxynucleotides directly into the renal interstitial space in uninephrectomized Sprague-Dawley rats causes a transient decrease in sodium excretion and does not affect blood pressure. The failure of the selective renal “silencing” of the D1 receptor to increase blood pressure may suggest that nonrenal D1 receptors, whose location(s) are yet to be determined, are also important in the overall regulation of blood pressure. Indeed, general disruption of the D1 receptor gene in mice leads to the development of hypertension. The D2 receptor also plays a role in the regulation of blood pressure, because deletion of the D2 receptor gene (D2−−) in mice produces hypertension that is aggravated by a high NaCl intake (Yang et al and L.D. Asico and P.A. Jose, unpublished data, 2010). Cross-
In the human kidney, the D₁ receptor uncoupling in hypertension is due to increased constitutive activity of G protein–coupled receptor kinase type 4 (GRK4), which is caused by the presence of GRK4 variants (especially R65L, A142V, and A486V)²⁴ (Figure 2). Whether or not the D₅ receptor is regulated by these GRK4 gene variants remains to be determined. There are polymorphisms in the promoter region of human GRK4, but their role in essential hypertension remains to be determined.²⁵ However, increased expression of renal GRK4 has been shown to be responsible for the renal D₁ receptor uncoupling in the SHR¹²,²⁴ and the salt sensitivity of C57BL/6J mice from The Jackson Laboratory (Bar Harbor, Me).²⁶ Deletion of the GRK4 gene in C57BL/6J mice (GRK4⁻/⁻) decreases basal blood pressure and prevents salt sensitivity.²⁶ It should be noted, however, that normal expression of wild-type GRK4 is needed for normal D₁ and D₅ receptor function.

In summary, D₁-like receptor function outside the central nervous system is impaired in essential hypertension. Whereas D₁-like receptor function is fully functional in some tissues (for example, the artery) in hypertension, the predominant organ involved in humans is probably the kidney.

D₃-Like Receptors

As indicated earlier, the D₂-like receptor family includes D₂₁, D₂₂, and D₂₃ receptors. The D₂ receptors in the rat kidney are located prejunctionally in dopaminergic nerves and postjunctionally in the proximal (S2 segment) and distal convoluted tubules and cortical collecting duct, whereas the D₃ receptor is expressed in the proximal (S1 segment) and distal convoluted tubules and especially in the cortical and medullary collecting ducts. In the rat kidney, the major D₃-like receptor in RPTs is the D₃ receptor; therefore, this review deals only with the role of the D₃ receptor and not the other D₂-like receptors in hypertension.

Physiologic Role of the Renal D₃ Receptor

As with D₁-like receptors, stimulation of renal D₃ receptors induces natriuresis and diuresis. D₃ receptor agonists, infused systemically or directly into the renal artery, increase sodium excretion.²⁷ The D₃ receptor, like the D₁-like receptors,²,¹²,¹⁹,²⁰ inhibits NHE3²⁵ and Na⁺–K⁺ ATPase activity²⁹ and may also inhibit the NaCl cotransporter and α-epithelial sodium channel. However, the D₃ receptor, unlike the D₁-like receptor, does not inhibit sodium phosphate cotransporter type IIa or the apical Cl⁻/HCO₃⁻ exchanger.²⁰

We have reported that the D₃ receptor, as with D₁-like receptors, is also important in the regulation of blood pressure. D₃⁻/⁻ and D₃⁻/+ mice have higher systolic and diastolic blood pressures than do their wild-type littermates, either on a mixed C57BL/6 and B129 background or in a congenic C57BL/6 background.³⁰ However, Staudacher et al.³¹ reported that D₃⁻/⁻ mice, in a congenic C57BL/6 background fed a low, normal, or high salt intake, have normal blood pressure. This report has to be interpreted with caution because C57BL/6 mice from The Jackson Laboratory may develop hypertension when fed a high-NaCl diet, whereas C57BL/6 mice from Taconic Farms (Hudson, NY) do not.²⁰ Nevertheless, these 2 strains of D₃⁻/⁻ mice have a decreased ability to excrete an acute or a chronic NaCl
load, which would lead to an expansion of the extracellular fluid volume.

D₃ Receptors and Hypertension

Renal D₃ receptor–mediated natriuresis and diuresis are impaired in rodent models of essential hypertension. Dahl salt-resistant rats, treated with a D₁ receptor antagonist, remain normotensive when sodium intake is normal but become hypertensive when sodium intake is increased. Activation of D₃ receptors induces natriuresis in normotensive Dahl-SS rats on a normal-sodium diet but not in hypertensive Dahl-SS rats fed a high-sodium diet. With a normal salt intake, renal D₃ receptor density is decreased in Dahl-SS relative to Dahl salt-resistant rats. A high-salt diet decreases renal D₃ receptor agonist binding to a greater extent in Dahl-SS than in Dahl salt-resistant rats, suggesting that this may be the cause of the decreased natriuretic effect of D₃ receptor stimulation in Dahl-SS rats. We have studied the renal effects of another selective D₃ receptor agonist, PD128907, infused directly into the renal artery of WKY rats and SHRs. PD128907 increased sodium excretion in WKY rats but not in SHRs. Renal D₃ receptor expression is lower and its degree of phosphorylation is greater in SHRs than in WKY rats, which may, in part, explain the impaired natriuretic effect of D₃ receptors in SHRs. As indicated earlier, the hypertension in the SHR is, in part, due to increased renal sodium excretion and maintaining a normal blood pressure.

Interaction Between Dopamine and Other Blood Pressure–Regulatory Systems

Interaction With Catecholamines and Their Receptors

Catecholamines have long been recognized to be important in the initiation and maintenance of high blood pressure. Increased sympathetic activity contributes to hypertension not only by increasing vascular tone and inducing cardiac and vascular remodeling but also by altering renal sodium and water homeostasis.

Dopamine Receptors Regulate Catecholamine Release and Adrenergic Receptor Function

Stimulation of dopamine receptors inhibits catecholamine release. D₂-like receptors inhibit the release of norepinephrine in gastric and uterine arteries and circulating norepinephrine levels in humans with heart failure. An inhibitory effect of D₂-like receptors on sympathetic tone or endogenous production of catecholamines has also been reported (Figure 3). Dopamine has also been reported to inhibit the ability of arginine vasopressin to increase water permeability and cAMP accumulation via α₂-adrenergic receptors, in the rat inner medullary collecting duct. Adrenergic receptors can regulate dopamine production and receptor function. Blockade of α₂-adrenergic receptors enhances brain cortical dopamine output. Activation of the β-adrenergic receptor with isoproterenol increases D₁ receptor translocation from the cytosol to the plasma membrane and augments D₁-like receptor–mediated inhibition of Na⁺-K⁺ ATPase activity in RPT cells.

Interaction Between Dopamine and Adrenergic Receptors Is Supported by Studies in Dopamine Receptor–Deficient Mice

D₂/⁻/⁻ mice, which are hypertensive, have an elevated urinary epinephrine to norepinephrine ratio, indicating increased adrenal catecholamine production (L.D. Asico and P.A. Jose, unpublished data, 2010). Adrenalectomy or α-adrenergic blockade decreases blood pressure to a greater extent in D₂/⁻/⁻ mice than in D₂+/⁺ littermates. Similarly, D₂/⁻/⁻ mice, which are also hypertensive, have higher epinephrine excretion than do their D₂+/⁺ littermates. α-Adrenergic blockade also decreases the blood pressure to a greater extent in D₂/⁻/⁻ than in D₂+/⁺ mice. These results suggest that the hypertension in D₂/⁻/⁻ and D₂/⁻/⁻ mice is caused, in part, by increased sympathetic activity. The salt sensitivity of D₂/⁻/⁻ mice may be related to renal nerve activity (L.D. Asico and P.A. Jose, unpublished data, 2010).

Interaction With the RAS

The RAS, especially in the kidney, is pre-eminent in the regulation of arterial pressure and sodium homeostasis, especially during conditions of sodium depletion. As noted next, different dopamine receptor subtypes interact with different components of the RAS, with the ultimate effect of increasing renal sodium excretion and maintaining a normal blood pressure (Figure 3).

The RAS Regulates Dopamine Release

In rats fed a low-salt diet, angiotensin II decreases urinary dopamine by increasing renal monoamine oxidase activity. In contrast, angiotensin 1-7 increases the release of extracellular dopamine in the rat striatum and hypothalamus, which becomes more evident with blockade of AT₁ receptors. Inhibition of angiotensin-converting enzyme also increases dopamine content in the mouse striatum. Whether or not these effects also occur in the kidney remains to be determined.

Interactions Between Dopamine and the RAS Also Occur at the Receptor Level

The interaction between dopamine and the RAS becomes very evident in receptor-deficient mice. Blockade of AT₁ receptors...
D1-Like Receptors

D1-like receptors negatively interact with angiotensin II, including a negative regulation of AT1 receptor action/expression and a positive regulation of AT2 receptor action/expression. The natriuretic effect of D1-like receptors is enhanced when angiotensin II production is decreased or when AT1 receptors are blocked. These short-term effects probably occur via protein-protein interaction that includes D1-like receptor-mediated internalization of the AT1 receptor. Not only do D1-like receptors interfere with the antinatriuretic effect of AT1 receptors, but they also interact with AT1 receptors to increase sodium secretion; Salomone et al reported that D1-like receptors increase AT2 receptor expression in RPT cells. The intermediate-term effects of dopamine on AT1 receptor actions are probably exerted at the posttranslational level (for example, increased degradation), whereas the long-term antagonistic effect of dopamine receptors on AT1 receptor actions is probably exerted at the transcriptional level. Harris and coworkers reported that in rabbit RPT cells, dopamine, via D1-like receptors, decreases AT1 receptor mRNA and protein levels.

D2-Like Receptors

D2-like receptors also negatively interact with angiotensin II, including a D1 and D4 receptor-mediated decrease in AT1 receptor action/expression. AT1 receptor expression is increased in mice lacking the D3 or D4 receptor. A D3 receptor agonist was found to decrease AT1 receptor expression in RPT cells from WKY rats. Bromocriptine, which has a greater affinity for the D2 and D3 receptors than the D4 receptor, prevents angiotensin II-mediated stimulation of Na+/K+ ATPase activity and decreases AT1 receptor protein expression in rat RPTs. The negative regulatory effect of bromocriptine on AT1 receptor expression is probably exerted at the D1 receptor because AT1 receptor expression is not increased in mice in which the D2 receptor gene is disrupted (P.A. Jose, unpublished observations, 2008).

Dopamine Interacts With Other Components of the RAS

The D1 receptor is expressed in juxtaglomerular cells in rodents but not in humans. In contrast, the D3 receptor, the other D1-like receptor, is not expressed in juxtaglomerular cells in all species studied. In vivo, the D1 receptor inhibits renin release in rodents via inhibition of macula densa cyclooxygenase 2. When cyclooxygenase 2 activity in the macula densa is suppressed or when the macula densa is not present, as in juxtaglomerular cells in culture, the D1 receptor stimulates renin secretion. The D3 but not the D4 receptor also inhibits renin secretion. Preliminary data show that stimulation of D3 receptors increases angiotensin-converting enzyme 2 expression and activity in RPT cells from WKY rats (X.J. Chen, C. Zeng, and P.A. Jose, unpublished data, 2010), which may have physiologic significance; angiotensin-converting enzyme 2 converts angiotensin II into angiotensin 1-7, which has natriuretic and vasodilatory properties. D1-like receptors have been reported to increase rat angiotensinogen gene expression in opossum kidney cells with a gene containing the 5′-flanking regulatory sequence of the rat angiotensinogen gene fused with a human growth hormone gene as a reporter. This effect, which would negate the natriuretic effects of dopamine receptors, remains to be confirmed. It is also not known whether or not any such interaction occurs in vivo.

An Abnormal Interaction Between Dopamine and AT1 Receptors Occurs in RPT Cells in Hypertensive States

In RPT cells from WKY rats, D1 and AT1 receptors heterodimerize and inhibit each other’s function; the ability of the D1 receptor to heterodimerize and inhibit AT1 receptor function is impaired in SHRs. The D3 receptor decreases AT1 receptor expression in RPT cells from WKY rats, whereas D3 receptor stimulation increases AT1 receptor expression in SHRs. The impaired natriuretic effect of the D3 receptor in SHRs may, in part, be related to aberrant D3 receptor inhibitory regulation of the AT1 receptor.

Conclusion

Renal function is regulated by physical factors, numerous hormones, and neural and humoral factors. Among those factors is dopamine; activation of any of the dopamine receptor subtypes (D1 through D5), especially in salt-replete conditions, induces natriuresis. These actions of dopamine are impaired in human essential hypertension and rodent models of essential hypertension. In addition, the numerous other abnormalities in essential hypertension may well prove to be linked to the regulation of dopamine receptor function. For example, GRK4 gene variants, which impair dopamine receptor function (for example, D1 and D3 receptors) or expression, may increase the activity of prohypertensive mechanisms. The natriuretic effects of dopamine are due to synergistic interaction with other natriuretic factors and negative interaction with antinatriuretic factors. The presence of constitutively active variants of GRK4, for example, GRK4 142V, increases AT1 receptor expression and function. Therefore, abnormal interactions between dopamine receptors on the one hand and the a-adrenergic system and RAS on the other may be involved in the pathogenesis of hypertension. Restoration of dopamine receptor function could be a complementary or even an alternative method to lower blood pressure in hypertensive patients.

Sources of Funding

These studies were supported, in part, by grants from the National Institutes of Health, Bethesda, Md (HL023081, HL074940, DK039308, HL068686, HL092196), National Natural Science Foundation of China (30470728, 30672199), Natural Science Foundation Project of CQ CSTC (CSTC.2009BA5044), and grants for Distinguished Young Scholars of China from the National Natural Science Foundation of China (30925018).

Disclosures

None.
References

Key Words: dopamine receptor ■ hypertension ■ adrenergic system ■ renin-angiotensin system
Dopamine Receptors: Important Antihypertensive Counterbalance Against Hypertensive Factors
Chunyu Zeng and Pedro A. Jose

Hypertension. 2011;57:11-17; originally published online November 22, 2010; doi: 10.1161/HYPERTENSIONAHA.110.157727

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/57/1/11

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/