Inorganic Nitrate for Blood Pressure Lowering?

To the Editor:

Kapil et al. reported that potassium nitrate ingestion lowers blood pressure (BP) in human subjects. Peak plasma nitrate (NO$_3^-$) and nitrite (NO$_2^-$) concentrations increased up to 35- and 4-fold, respectively. Increased plasma cGMP levels suggest that the depressor action of nitrate is mediated by the NO/cGMP cascade, presumably after reduction of NO$_3^-$ to NO$_2^-$ and its reduction to NO. Using 15NO$_3^-$, we provided evidence for 15NO$_3^-$ to 15NO$_2^-$ reduction in humans. Similar results were obtained for 15NO$_3^-$ and S-15Nitrato-N-acetylcysteine ethyl ester in male rabbits (Figure). Oral administration of isosorbide dinitrate (ISDN) (0.13 mmol daily) and pentaerythrityl tetranitrate (PETN) (0.25 mmol daily) increased moderately plasma concentration of NO$_3^-$ (1.2- and 1.4-fold, respectively) and NO$_2^-$ (2.2- and 1.8-fold, respectively) in young subjects.3

Organic nitrates (R-ONO$_2$), inorganic salts of NO$_3^-$, and thionitrites (R-SNO) seem to lower BP through similar mechanisms, but their pharmacokinetics and pharmacodynamics differ considerably. The single dose of 0.32 to 0.45 mmol NO$_3^-$ / kg1 is up to 60 times the mean daily endogenous NO synthesis rate in healthy subjects and up to 36 times the therapeutic ISDN and PETN dose.3 NO$_3^-$ required for BP lowering results in very high and long-lasting extracellular and intracellular NO$_3^-$ and NO$_2^-$ concentrations, which may, in turn, exert toxic, mutagenic, and carcinogenic effects. NO$_3^-$ and NO$_2^-$ are actively transported in various cells including the nephron.2 High millimolar tissue concentrations of NO$_3^-$ may induce acidosis in mammalian cells.4 Also, elevation of methemoglobin, oxidative stress, and glutathione consumption may ensue.

Ingestion of NO$_3^-$-rich foods or cheap NO$_3^-$ salts for NO-mediated BP lowering is tempting. However, ingestion of large NO$_3^-$ amounts carries serious risks because of the unpredictable harmful potential of the NO$_3^-$ / NO$_2^-$ / NO / NH$_3$ system. Before NO$_3^-$ supplementation can be applied clinically for BP lowering, efficacy and safety needs to be demonstrated in large clinical studies.

Figure. A–C, Pharmacokinetics of orally administered 15NO$_3^-$ (A), 15NO$_2^-$ (B), and S-15Nitrato-N-acetylcysteine ethyl ester (S15NACET) (C) to rabbits. D, BP effect of intravenous S15NACET in a rabbit. Data are mean±SD from duplicate analyses (A and B) in one rabbit each or from three rabbits (C).
studies. However, these trials cannot exclude an increased NO₃⁻/NO₂⁻-induced cancer risk.⁵

Disclosures

None.

Dimitrios Tsikas
Dirk O. Stichtenoth
Jens Jordan
Institute of Clinical Pharmacology
Hannover Medical School
Hannover, Germany

Inorganic Nitrate for Blood Pressure Lowering?
Dimitrios Tsikas, Dirk O. Stichenoth and Jens Jordan

Hypertension. 2011;57:e1-e2; originally published online December 6, 2010;
doi: 10.1161/HYPERTENSIONAHA.110.164574

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2010 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/57/2/e1