Inorganic Nitrate for Blood Pressure Lowering?

To the Editor: Kapil et al reported that potassium nitrate ingestion lowers blood pressure (BP) in human subjects. Peak plasma nitrate (NO₃⁻) and nitrite (NO₂⁻) concentrations increased up to 35- and 4-fold, respectively. Increased plasma cGMP levels suggests that the depressor action of nitrate is mediated by the NO/cGMP cascade, presumably after reduction of NO₃⁻ to NO₂⁻ and its reduction to NO. Using ¹⁵NO₃⁻, we provided evidence for ¹⁵NO₃⁻ to ¹⁵NO₂⁻ reduction in humans. Similar results were obtained for ¹⁵NO₃⁻ and S-¹⁵N-nitroso-N-acetylcysteine ethyl ester in male rabbits (Figure). Oral administration of isosorbide dinitrate (ISDN) (0.13 mmol daily) and pentaerythrityl tetranitrate (PETN) (0.25 mmol daily) increased moderately plasma concentration of NO₃⁻ (1.2- and 1.4-fold, respectively) and NO₂⁻ (2.2- and 1.8-fold, respectively) in young subjects.

Organic nitrates (R-ONO₂), inorganic salts of NO₃⁻, and thionitrites (R-SNO) seem to lower BP through similar mechanisms, but their pharmacokinetics and pharmacodynamics differ considerably. The single dose of 0.32 to 0.45 mmol NO₃⁻/kg is up to 60 times the mean daily endogenous NO synthesis rate in healthy subjects and up to 36 times the therapeutic ISDN and PETN dose. NO₃⁻ required for BP lowering results in very high and long-lasting extracellular and intracellular NO₃⁻ and NO₂⁻ concentrations, which may, in turn, exert toxic, mutagenic, and carcinogenic effects. NO₃⁻ and NO₂⁻ are actively transported in various cells including the nephron. High millimolar tissue concentrations of NO₃⁻ may induce acidosis in mammalian cells. Also, elevation of methemoglobin, oxidative stress, and glutathione consumption may ensue.

Ingestion of NO₃⁻-rich foods or cheap NO₃⁻ salts for NO₃-mediated BP lowering is tempting. However, ingestion of large NO₃⁻ amounts carries serious risks because of the unpredictable harmful potential of the NO₃⁻/NO₂⁻/NO/NH₃ system. Before NO₃⁻ supplementation can be applied clinically for BP lowering, efficacy and safety needs to be demonstrated in large clinical

Figure. A–C, Pharmacokinetics of orally administered ¹⁵NO₃⁻ (A), ¹⁵NO₂⁻ (B), and S-¹⁵N-nitroso-N-acetylcysteine ethyl ester (S¹⁵NACET) (C) to rabbits. D, BP effect of intravenous S¹⁵NACET in a rabbit. Data are mean±SD from duplicate analyses (A and B) in one rabbit each or from three rabbits (C).
studies. However, these trials cannot exclude an increased NO$_3^-$/NO$_2^-$-induced cancer risk.5

Disclosures

None.

Dimitrios Tsikas
Dirk O. Stichtenoth
Jens Jordan
Institute of Clinical Pharmacology
Hannover Medical School
Hannover, Germany


Inorganic Nitrate for Blood Pressure Lowering?
Dimitrios Tsikas, Dirk O. Stichtenoth and Jens Jordan

Hypertension. 2011;57:e1-e2; originally published online December 6, 2010;
doi: 10.1161/HYPERTENSIONAHA.110.164574

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/57/2/e1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/