Salt sensitivity of blood pressure is an independent risk factor for cardiovascular mortality in normotensive individuals and an independent prognostic factor for essential hypertension. The salt-induced increase in blood pressure reflects a complex interplay among renal, central, and vascular systems. The mechanisms causing salt sensitivity are not well defined, but subclinical renal impairment and abnormal modulation of the renin-angiotensin-aldosterone system (RAAS) by dietary salt may be contributory. Even when aldosterone is low or normal, mineralocorticoid receptor (MR) blockade can be cardioprotective, and pathophysiological activation of MR by alternative ligands has been found in rodent models of salt-sensitive hypertension.

Cross-talk at the receptor level between the RAAS and the hypothalamic-pituitary-adrenal axis is prevented by 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2). This enzyme protects MR directly, by restricting the local availability of glucocorticoids, and indirectly, by locking glucocorticoid-occupied MR in an inactive state. Null mutations in the encoding gene, HSD11B2, cause apparent mineralocorticoid excess (Online Mendelian Inheritance in Man +218030), which presents in children with salt-sensitive hypertension, hypokalemia, and low plasma aldosterone. A type 2 variant of the disease (Online Mendelian Inheritance in Man 207765) presents in adults as essential hypertension with mild abnormalities in steroid metabolism.

HSD11B2 is an attractive candidate gene for salt sensitivity, and polymorphisms associated with either blood pressure, per se, or salt sensitivity of blood pressure have been found in several populations. To define the role of the enzyme in the physiological regulation of blood pressure, we previously generated mice with a targeted deletion of Hsd11b2. In the present study, heterozygote null mice (Hsd11b2+/−), which have only 50% of normal enzyme levels, were found to have salt-sensitive blood pressure and electrolyte abnormalities consistent with mineralocorticoid excess. However, we found no evidence for nonmodulation of the RAAS and the increased blood pressure reflected activation of the glucocorticoid receptor (GR).
Methods

Experiments were performed on heterozygote (Hsd11b2+/−) and wild-type (Hsd11b2+/+) male mice (aged 100 to 200 days) under a license from the United Kingdom Home Office.

Studies in Conscious Mice

Blood pressure, measured by radiotelemetry, was recorded in mice initially maintained on standard chow (0.25% Na by weight) before high-sodium feeding (2.5% Na by weight) over a 19-day period. Sodium balance was measured using metabolism cages. After acclimatization, baseline measurements were made over a 3-day period, after which mice were fed high-sodium chow for an additional 18 days. Water and food intake, urine and fecal output, and mouse body weight were monitored daily. Mice were then decapitated and the kidneys taken for histological examination, measurement of 11βHSD2 activity, and gene expression.

Measurements in Anesthetized Mice

Mice, fed either a control or high-sodium diet for 4, 21, or 70 days, were anesthetized (Inactin, 100 mg/kg, IP) for measurement of mean arterial blood pressure (MBP) by direct cannulation. Evans Blue dye was injected intravenously for measurement of plasma volume and blood sampled for measurement of plasma potassium and osmolality. Urine was collected from the bladder for calculation of the urine sodium:potassium concentration ratio (UNa:K) and transtubular potassium gradient (TTKG).

Renal 11βHSD2 enzyme activity was assessed using thin layer chromatography to measure the conversion of [3H]corticosterone to [3H]dehydrocorticosterone.21 Kidney homogenates from Hsd11b2 null mice were used as negative controls and showed a conversion not significantly different from 0.

Inhibitor Studies

Mice received spironolactone, dexamethasone, or RU38486 before and during high-sodium feeding (please see the online Data Supplement at http://hyper.ahajournals.org).

Quantitative PCR

Hsd11b2 mRNA was quantified by a validated Taqman assay. Data were normalized to wscr1 on a sample-to-sample basis. The expression of wscr1 was not different between genotypes and was not affected by high-sodium diet.

Statistics

Data are mean±SE, except for cumulative sodium balance data, which are medians plus ranges. Comparisons were made using unpaired t test, ANOVA with Holm-Sidak post hoc test, or the Kruskal-Wallis test, as appropriate.

Results

Renal 11βHSD2 activity (Figure 1A) and Hsd11b2 mRNA levels in Hsd11b2+/− mice were ≈50% those of Hsd11b2+/+ mice and not influenced by dietary sodium. In conscious Hsd11b2+/− and wild-type mice fed a control sodium diet, MBP and urinary sodium excretion were similar (Figure 1B and 1C). The UNa/K ratio tended to be lower in Hsd11b2+/− mice than in wild types (Hsd11b2+/− =0.39±0.07 versus Hsd11b2+/+ =0.80±0.21; P=0.08), but sodium balance was neutral (Figure 1D).

In Hsd11b2+/− mice, high-sodium feeding rapidly increased urinary sodium excretion without affecting either sodium balance or MBP. Hsd11b2+/− mice responded differently: the immediate natriuretic response was significantly blunted (Figure 1C), and the mice developed a positive sodium balance (Figure 1D). The UNa/K ratio increased immediately in both groups of mice in response to high-sodium feeding but remained relatively suppressed in heterozygotes (Hsd11b2+/− =6.51±0.44 versus Hsd11b2+/+ =8.46±0.69; P>0.05), indicating residual mineralocorticoid activity. MBP began to increase on the second day...
of high-sodium feeding, reaching statistical significance at day 5, at which time neutral sodium balance had been restored.

Plasma volume, plasma potassium, and MBP were measured in separate cohorts of mice after 4, 21, or 70 days of high sodium intake. On the control diet, Hsd11b2+/− and Hsd11b2+/+ mice had a similar plasma volume, plasma potassium, and hematocrit values (Table 1). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokalemic, and MBP was increased (Figure 1E). The TTKG was reduced but remained hypokal...
remained lower \((Hsd11b2^+/^-0.94 \pm 0.60\) versus \(Hsd11b2^+/+= 2.43 \pm 1.80; n=7/5; P=0.06)\). Despite the lack of effect on blood pressure, spironolactone partially prevented the salt-induced increase in heart weight observed in \(Hsd11b2^+/^-\) mice \((P<0.05; Table 2)\).

The GR antagonist RU38486 prevented the sodium-induced increase in blood pressure (Figure 4A) and partially prevented the increased heart weight (Table 2) observed in the heterozygotes. RU38486 also normalized plasma potassium (Figure 4B) and the \(U_{Na:K}\) ratio.

Discussion

Deficiency in 11\(\beta\)HSD2 promotes salt retention, potassium wasting, and hypertension, thought to reflect unregulated activation of renal MR by glucocorticoids.\(^9,23\) Apparent mineralocorticoid excess arises in children who are homozygous\(^9\) or compound heterozygous\(^24\) for mutations that ablate 11\(\beta\)HSD2 activity. Apparent mineralocorticoid excess is rare, and the majority of those carrying a single mutated allele appear normal.\(^9\) Detailed long-term follow-up of heterozygotes is lacking but evidence suggests abnormal steroid excretion and a propensity toward low-renin hypertension in older individuals,\(^10,11\) and an age-dependent decline in 11\(\beta\)HSD2 activity has also been reported.\(^26\) Defects in 11\(\beta\)HSD2 may, therefore, be a risk factor for hypertension in the general population.

In the present study we identified a strong sensitivity of blood pressure to dietary sodium intake in mice heterozygote for a null mutation in \(Hsd11b2\). On a control diet, heterozygote mice displayed subtle signs of mineralocorticoid excess but had no derangements in blood pressure or plasma electrolytes and were in neutral sodium balance. The transition to high-salt feeding uncovered in heterozygote mice a blunted renal natriuretic response: transient sodium retention preceded a rise in blood pressure by 24 to 48 hours. \(Hsd11b2^+/^-\) mice also developed hypokalemia. The suppressed \(U_{Na:K}\) ratio and TTKG >7 suggested enhanced mineralocorticoid bioactivity in the distal nephron. The RAAS seemed to be appropriately modulated by dietary salt: overt aldosterone excess does not cause the sodium retention in \(Hsd11b2^+/^-\) mice.

In mice\(^20\) and humans\(^9\) lacking 11\(\beta\)HSD2, glucocorticoids have been shown to act as unregulated mineralocorticoids. In the current study, sodium loading did not affect 11\(\beta\)HSD2 activity, consistent with previous reports.\(^27\) Additional diminution of the enzymatic barrier does not contribute to salt sensitivity in heterozygote mice, but spillover activation of MR after an increase in circulating corticosteroid was indicated. However, spironolactone (administered at a dose shown to be effective against high concentrations of glucocorticoid\(^5\)) did not alleviate the symptoms of mineralocorticoid excess in salt-loaded heterozygote mice, and we, therefore, suggest that inappropriate activation of MR is not causal. Our study does, however, suggest a cardioprotective role for MR,\(^2\) independent of blood pressure, because spironolactone partially rescued the salt-induced increase in heart:body weight ratio in \(Hsd11b2^+/^-\) mice.

At present we cannot define the mechanisms leading to increased corticosterone. However, salt-sensitive individuals display an attenuated glucocorticoid clearance,\(^28\) and glucocorticoid regeneration by renal 11\(\beta\)HSD1 has been linked to salt sensitivity in rats.\(^29\) In the present study, impaired peripheral metabolism alone cannot account for the rise in plasma corticosterone, because 11\(\beta\)HSD2 was not regulated by salt intake. It is possible that the hypothalamic-pituitary-adrenal axis is activated during the transition to high-sodium diet, as has been reported in salt-sensitive humans.\(^30\) Mechanistically, the alterations in \(U_{Na:K}\) and TTKG provide compelling evidence that epithelial sodium channel activation in the aldosterone-sensitive distal nephron under-
pins the sodium retention in Hsd11b2+/−/− mice. GR blockade prevented the development of the salt-induced phenotype, and this is consistent with regulation by GR of serum glucocorticoid regulated kinase 1 and the epithelial sodium channel.5,31 Moreover, recent studies indicate that 11βHSD2 regulates the translocation of GR into the principal cell nucleus,32 thereby governing transcriptional responses to glucocorticoids.

Surprisingly, sodium retention was associated with volume contraction rather than expansion. This may reflect a countervailing influence of GR on vascular permeability and compliance. Redistribution of fluid out of the vascular space is characteristic of glucocorticoid excess, and we have previously noted plasma volume contraction in other relevant models.5,19 The absence of volume expansion in Hsd11b2+/−/− mice challenges the assumption that the salt-sensitive phenotype is an uncomplicated renal phenomenon. 11βHSD2 is expressed in other sites critical to blood pressure homeostasis and alternative explanations for the salt sensitivity should be considered. For example, moderate glucocorticoid excess inhibits endothelial NO synthase expression by the vascular endothelium,33,34 an effect normally buffered by 11βHSD2.34 Suppression of 11βHSD2 exacerbates the inhibition,34 which could contribute to the GR-driven increase in blood pressure observed here. Similarly, central inhibition of 11βHSD2 exerts a strong pressor effect.35 Hypertension in the

Perspectives

Genetic, acquired, or age-dependent reductions in 11βHSD2 may adversely affect blood pressure homeostasis. Our study demonstrates an inverse relationship between 11βHSD2 and blood pressure in a clinically important context: high-sodium intake36 and salt-sensitivity of blood pressure1,2 are important risk factors for cardiovascular death. Our data suggest that MR activation does not cause the salt sensitivity of blood pressure but contributes to the cardiac hypertrophy. We have identified a potential role for 11βHSD2 in governing GR access and speculate that this may involve activation of the hypothalamic-pituitary-adrenal axis.

Acknowledgments

We thank Gillian Brooker and Ali Ashek for surgical assistance, Nina Kotelevtseva for genotyping, and Forbes Howie for albumin measurements.

Sources of Funding

This work was funded in part by Wellcome Trust Principal (to J.J.M.) and Intermediate (to M.A.B.) fellowships and a Medical Research Council Capacity Building PhD studentship (to E.C.) and...
was supported by a British Heart Foundation Centre of Research Excellence award.

Disclosures
None.

References
Hsd11b2 Haploinsufficiency in Mice Causes Salt Sensitivity of Blood Pressure
Matthew A. Bailey, Eilidh Craigie, Dawn E.W. Livingstone, Yuri V. Kotelevtsev, Emad A.S. Al-Dujaili, Christopher J. Kenyon and John J. Mullins

Hypertension. 2011;57:515-520; originally published online January 31, 2011; doi: 10.1161/HYPERTENSIONAHA.110.163782

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/57/3/515

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2011/01/28/HYPERTENSIONAHA.110.163782.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

Hsd11b2 HAPLOINSUFFICIENCY IN MICE CAUSES SALT-SENSITIVITY OF BLOOD PRESSURE

Matthew A. Bailey1 PhD, Eilidh Craigie1 PhD, Dawn E.W. Livingstone1 PhD, Yuri V. Kotelevtsev1,3 PhD, Emad A.S. Al-Dujaili2 PhD, Christopher J. Kenyon1 PhD and John J. Mullins1 PhD

1British Heart Foundation/University Centre for Cardiovascular Science, The University of Edinburgh, 2Dietetics, Nutrition and Biological Sciences Research, Queen Margaret University, Edinburgh, Scotland, UK and 3Stem Cell Genome Modification Laboratory, Puschino State University, Russia.

Correspondence: Matthew Bailey, PhD
47, Little France Crescent
The University of Edinburgh
EH16 4TJ

Telephone/Fax: +441312426720/+441312426782
Email: matthew.bailey@ed.ac.uk
Genotyping

Mice were obtained from heterozygote crosses of a congenic Hsd11b2-C57BL/6J line. For genotyping, genomic DNA, isolated from ear biopsies, was digested by BamHI and separated on 0.8% agarose gel for Southern analysis using a EcoRI hybridization probe subcloned from the first intron of the Hsd11b2 gene. The wild-type allele was represented by a 10kb (9899bp) restriction fragment. The targeted allele was represented by 2 kb (1850 bp) restriction fragment, resulting from the insertion of a BamHI site at the 5’ end of the Neo cassette, upstream of the genomic XbaI site. A sample blot, below, shows the three genotypes, Hsd11b2+/− (het), Hsd11b2+/+ (WT) and Hsd11b2−/− (null).

Telemetry studies: Blood pressure was measured by radiotelemetry using a device (Model TA 11PAC10, Data Sciences, UK) implanted under isofluorane anesthesia. After recovery from surgery, blood pressure was monitored until circadian variation was restored and mean pressure stabilized (all within 7 days). Mice were single...
housed throughout and allowed free access to water and a control chow (0.25% Na by weight; RM1 diet, Special Diet Services, UK). After 7 days, baseline blood pressure was recorded over a three-day period and mice then fed a high sodium diet (2.5% Na by weight; Diet 829504, SDS, UK) over a 19-day recording period. For each mouse, a daily average mean arterial blood pressure was taken and used to calculate the mean daily value per genotype.

Inhibitor studies: In addition to control (untreated) experiments, mice received one of 3 co-treatments:

1. **Spironolactone pellets** (Silastic, a gift from Dow-Corning, USA) were implanted subcutaneously under isoflurane anesthesia, five days before feeding 2.5% sodium diet. Two pellets were implanted, each containing 30mg of spironolactone. *In vitro* studies confirmed that spironolactone release from the matrix is at a constant rate over the experimental period. The concentration of canrenone in terminal plasma was measured by mass-spectrometry (Clinical Research Facility, University of Edinburgh) and was ~75 nmol/l, similar to a previous study in which the drug exerted a hypotensive effect.

2. **Dexamethasone** was administered in the drinking water (1µg/ml in 0.1% ethanol) throughout the period of high sodium feeding. Plasma corticosterone was measured in samples taken from conscious, unrestrained animals at 6:30pm.

3. **RU38486 pellets** were implanted five days before giving the high sodium diet. Two pellets were implanted, each containing 30mg and the concentration of RU38486 in terminal plasma, measured by mass spectrometry was ~100nmol/l.

Analysis: Sodium and potassium concentrations were measured by ISE or flame photometry. Osmolality was measured by freezing-point depression. Corticosterone,
deoxycorticosterone and aldosterone concentrations were measured by ELISA or RIA, as described4, 5. For urinary excretion, an average rate was measured during the baseline period and during the adaptive (days 1, 2 and 3) and plateau (days 11, 13, & 15) phases of the response to high sodium diet. Urinary albumin concentration was measured using a commercial kit (Olympus Diagnostics) as described6

REFERENCES

