Glucocorticoid-Induced Fetal Programming Alters the Functional Complement of Angiotensin Receptor Subtypes Within the Kidney

TanYa M. Gwathmey, Hossam A. Shaltout, James C. Rose, Debra I. Diz, Mark C. Chappell

Abstract—We examined the impact of fetal programming on the functional responses of renal angiotensin receptors. Fetal sheep were exposed in utero to betamethasone (BMX; 0.17 mg/kg) or control (CON) at 80 to 81 days gestation with full-term delivery. Renal nuclear and plasma membrane fractions were isolated from sheep age 1.0 to 1.5 years for receptor binding and fluorescence detection of reactive oxygen species (ROS) or nitric oxide (NO). Mean arterial blood pressure and blood pressure variability were significantly higher in the BMX-exposed adult offspring versus CON sheep. The proportion of nuclear AT$_1$ receptors sensitive to losartan was 2-fold higher (67±6% vs 27±9%; $P<0.01$) in BMX compared with CON. In contrast, the proportion of AT$_2$ sites was only one third that of controls (BMX, 25±11% vs CON, 78±4%; $P<0.01$), with a similar reduction in sites sensitive to the Ang-(1-7) antagonist D-Ala$_7$-Ang-(1-7) with BMX exposure. Functional studies revealed that Ang II stimulated ROS to a greater extent in BMX than in CON sheep (16±3% vs 6±4%; $P<0.05$); however, NO production to Ang II was attenuated in BMX (26±7% vs 82±14%; $P<0.05$). BMX exposure was also associated with a reduction in the Ang-(1-7) NO response (75±8% vs 131±26%; $P<0.05$). We conclude that altered expression of angiotensin receptor subtypes may be one mechanism whereby functional changes in NO- and ROS-dependent signaling pathways may favor the sustained increase in blood pressure evident in fetal programming. (Hypertension. 2011;57[part 2]:620-626.)

Key Words: angiotensin receptors ■ kidney ■ fetal programming ■ hypertension

Glucocorticoids have an important influence on cell maturation and differentiation, particularly in the developing lung. Indeed, the treatment of mothers in immediate jeopardy of preterm delivery with synthetic glucocorticoids enhances fetal lung maturation and lessens respiratory distress syndrome, as well as substantially reduces neonatal mortality and morbidity; glucocorticoid administration is now standard care for women with preterm labor before 35 weeks gestation. However, a single course of antenatal corticosteroids is associated with higher blood pressure in adolescence and decreased insulin sensitivity and renal function in adulthood.

Experimental studies demonstrate that exposure of the fetus to elevated glucocorticoids during this critical period of gestation results in the development of elevated blood pressure once the offspring reaches adulthood. In a well-characterized model of fetal programming, adult offspring of sheep exposed antenatally to the glucocorticoid betamethasone (BMX) exhibit increased mean arterial pressure (MAP) that is associated with reduced baroreflex sensitivity and an attenuated capacity to excrete sodium. Furthermore, steroid-induced programming may selectively influence the enzymatic components of the renin-angiotensin system, such that the ratio of angiotensin-converting enzyme (ACE) to ACE2 is increased in the circulation and kidney favoring the Ang II-AT$_1$ receptor axis. In this regard, sensitivity to Ang II and other stressors is enhanced in the offspring of glucocorticoid-exposed mothers. Indeed, acute treatment with an AT$_1$ receptor antagonist lowers blood pressure in adult exposed sheep at a therapeutic dose that does not influence pressure in the nonexposed adults.

We recently reported the increased expression of the angiotensin receptor subtype AT$_1$, and a concomitant decrease in the AT$_2$ subtype within the kidney cortex of older (age 3–5 years) versus younger adult (age 1.5 years) sheep. This altered receptor ratio was associated with an increased response in the Ang II-dependent release of reactive oxygen species (ROS) that was abolished by an AT$_1$ receptor antagonist. In lieu of the functional role of glucocorticoids to influence tissue maturation, we hypothesize that antenatal exposure to glucocorticoids may influence renin-angiotensin system receptors to promote the development and/or progression of high blood pressure associated with fetal programming. The present studies investigated the effect of antenatal

Received October 27, 2010; first decision November 22, 2010; revision accepted December 13, 2010. From the Hypertension and Vascular Research Center (T.M.G., H.A.S., D.I.D., M.C.C.), and the Center for Perinatal Research (J.C.R.), Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, NC 27157. Correspondence to Mark C. Chappell, Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157. E-mail mchappel@wfubmc.edu

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.110.164970

620
BMX administration on the expression and function of angiotensin receptors within the cortical and medullary areas of the adult kidney from control (CON) and exposed sheep.

Materials and Methods

Animals
Pregnant ewes were administered 2 intramuscular doses of 0.17 mg/kg BMX or saline (CON) at days 80 and 81 of gestation, 24 hours apart.5 Offspring were delivered at full term, were farm raised, and were transferred to the Wake Forest University School of Medicine animal facility at age 1.0 to 1.5 years. Animals were fed a normal diet with access to water ad libitum and maintained on a 12:12-hour light-dark cycle. All procedures were approved by the Institutional Animal Care and Use Committee at Wake Forest University School of Medicine.

Blood Pressure Measurements
Sheep were anesthetized with ketamine and isoflurane followed by catheterization into the femoral artery and vein for blood pressure measurements.5 After at least 5 days recovery, MAP and heart rate were recorded in conscious animals and digitized with Acknowledge software (BIOPAC 3.8.1). Blood pressure variability was measured by power of the spectral density of systolic arterial pressure in the low-frequency range (LFSAP), in normalized units using the Nevrokard BRS software (Nevrokard BRS, Medistar).5

Tissue Preparation
The kidney tissues were obtained from adult mixed-breed sheep anesthetized with ketamine and isoflurane. Kidneys were dissected in ice-cold saline into the renal cortex and medulla and either immediately frozen on dry ice and stored at −80°C or processed at 4°C for isolation of nuclei.

Isolation of Renal Nuclei and Plasma Membrane
Nuclei and plasma membrane fractions were prepared as described previously.14–16 Fresh or frozen tissue (approximately 0.500 g) was homogenized in a buffer containing 25 mmol/L KCl, 5 mmol/L MgCl2, 20 mmol/L Tricine-KOH, and 25 mmol/L sucrose (pH 7.8). The homogenate was passed through a 100-μm mesh-filter and centrifuged twice at 1000 g (4°C) for 10 minutes to obtain the nuclear fraction. The resultant supernatant was centrifuged at 25 000 g for 20 minutes (4°C), yielding the plasma membrane fraction. The pellet from the nuclear fraction was resuspended in 20% OptiPrep solution (Accurate Chemical and Scientific) and layered on a discontinuous density gradient column of 25%, 30%, and 35% OptiPrep solution (Accurate Chemical and Scientific) and layered on a discontinuous density gradient column of 25%, 30%, and 35% OptiPrep solution. Each gradient was topped with 10% OptiPrep solution and centrifuged at 10 000 g for 20 minutes (4°C). The enriched fraction of isolated nuclei was recovered at the 30% to 35% layer interface.

Angiotensin Binding Studies
Angiotensin binding sites were determined with the radioligand 125I-(Sar1, Thr8) Ang II (125I-sarthran) in the presence of losartan (LOS), PD123319, D-Ala7-Ang-(1-7) (A779 or D-Ala) or nonlabeled sarthran as previously described.14

Reactive Oxygen Species Production
The production of ROS was measured in isolated renal cortical nuclei using the fluorescence dye, 5-(and-6)-chloromethyl-2,7'-dichlorodihydrofluorescein diacetate-acetyl ester (20 μg/mL; Molecular Probes) as described.16 The NADPH oxidase inhibitor diphenyleneiodonium (1 mmol/L) abolished the Ang II response.

Nitric Oxide Production
Production of nitric oxide in isolated cortical nuclei was assessed with the fluorescence dye, 4-amino-5-methylamino-2',7'-dihlorofluorescein diacetate (5 μg/mL; Molecular Probes).14 The NOS inhibitor L-NAME (1 mmol/L) abolished the Ang II and Ang-(1-7) responses.

Determination of ACE, ACE2, and Neprilysin Activities
Peptidase activities were determined in isolated cortical nuclei as described.15 One unit (U) of activity was defined as 1 fmol product/mg protein/minute of incubation at 37°C.

Statistical Analysis
Data are represented as mean±SEM. Paired or unpaired Student t-test, one-way ANOVA with Tukey’s multiple comparison posthoc, and linear regression analysis were performed using GraphPad Prism 5.0 plotting and statistical software.

Results
MAP was significantly higher in adult sheep exposed antenatally to BMX compared with CON animals that received saline (98±3 vs 79±2 mm Hg; P<0.05; Figure 1A). Although the corresponding heart rate was not different between the BMX-exposed and CON sheep (Figure 1B), blood pressure variability (LFSAP) was significantly higher in the exposed sheep (Figure 1C) compared with CON. Body weights for the 2 groups of sheep were not significantly different.

The relative proportions of Ang II receptor subtypes were determined for both nuclear and plasma membrane fractions from the renal cortex and medulla of CON and BMX-exposed sheep by competition for 125I-sarthran binding with selective isotype antagonists. As shown in Figure 2A, the AT1 receptor antagonist LOS competed for a greater percentage of sarthran binding in both the nuclear and plasma membrane fractions from the BMX-exposed sheep compared with the CON animals. Competition by the AT2 antagonist PD123319 in the renal cortex was lower in both nuclear and plasma membrane fractions of BMX-exposed than in CON animals (Figure 2B). Similar to PD123319, the Ang-(1-7) antagonist D-Ala competed to a lesser degree in the cortical nuclei of the BMX-exposed sheep (Figure 2C). In contrast, the AT1 receptor was the predominant subtype in either nuclei or plasma membrane fractions of the renal medulla of CON sheep (Figure 3A). Moreover, the extent of competition by LOS, PD123319, or D-Ala in renal medullary tissue was not altered in BMX-exposed sheep (Figure 3A–C).

We next determined whether functional differences accompanied the alterations in Ang receptor subtypes in the cortical nuclei from BMX-exposed sheep. Generation of ROS (an AT1 receptor–mediated event) was assessed in response to Ang II in freshly isolated nuclei from the renal cortex. Ang II (1 nmol/L) elicited a 3-fold greater increase in ROS in cortical nuclei of BMX-exposed animals than in CON animals (Figure 4). The ROS response was significantly reduced in nuclei from BMX-exposed animals preincubated with the AT1 receptor antagonist LOS. In contrast, the AT2 receptor antagonist PD123319 more than doubled the ROS response to Ang II in cortical nuclei of the BMX-exposed sheep as compared with Ang II alone (Figure 4). Renal nuclei from CON animals that were preincubated with LOS showed a small reduction in the low levels of ROS produced following stimulation with Ang II. Similar to BMX-exposed sheep, blockade of the AT2 receptor further increased ROS produc-
tion in nuclei of CON sheep. Treatment with the Ang-(1-7) antagonist D-Ala did not influence the Ang II response in cortical nuclei from either CON or BMX-exposed sheep (Figure 4). Although not shown, the NADPH oxidase inhibitor diphenyleneiodonium abolished the Ang II response, consistent with previous data in the kidney of nonexposed sheep and rats.16,17

Previous studies in CON sheep revealed that both AT2 and Ang-(1-7) receptors are functionally coupled to NO formation.14,15 As shown in Figure 5, NO production in response to Ang II was significantly lower in cortical nuclei from BMX-exposed animals compared with nonexposed sheep and rats; however, pretreatment of nuclei with the AT2 antagonist PD123319 abolished Ang II-stimulated NO in both groups. The NOS inhibitor L-NAME abolished the NO response to Ang II (data not shown). In addition, coincubation with the Ang-(1-7) antagonist D-Ala significantly attenuated Ang II response in CON and BMX-exposed animals (Figure 5). As shown in Figure 6, the NO response to Ang-(1-7) (1 nmol/L) was also attenuated in renal cortical nuclei from the BMX-exposed sheep. The D-Ala antagonist abolished the Ang-(1-7) response in both CON and BMX-treated groups; however, neither LOS nor PD123319 influenced NO formation to Ang-(1-7). The Ang-(1-7) response was abolished by the NOS inhibitor L-NAME (data not shown) consistent with previous results in nonexposed sheep.15

In lieu of the functional changes for the angiotensin receptors following BMX exposure, correlation analyses for the ROS or NO response and changes in MAP were performed. As shown in Figure 7A, the ROS response to Ang II was positively correlated with blood pressure (r=0.7360) among nonexposed and BMX-exposed sheep. In contrast, NO responses to both Ang II (r=-0.842) and Ang-(1-7) (r=-0.871) were negatively correlated with blood pressure in the 2 groups (Figure 7B and 7C, respectively).

Finally, we determined whether differences in the functional response were attributable to alterations in intracellular peptide metabolism. Although ACE, ACE2, and nephrilysin were evident on isolated nuclei, their activity levels were

Figure 1. Influence of antenatal BMX exposure on (A) mean arterial pressure, (B) heart rate, (C) blood pressure variability, and (D) body weight in adult sheep. Blood pressure variability was determined by power of the spectral density of systolic arterial pressure in the low-frequency range (LF_SAP) in normalized units (nu) in control (CON) and BMX-exposed sheep. Data are 6 males and 2 females per group. Values are mean ± SEM; *P<0.05 vs CON.

Figure 2. Angiotensin receptor subtypes in nuclear and plasma membrane (PM) fractions from renal cortex of control (CON) and BMX-exposed sheep. Competition binding was performed with 0.5 nmol/L 125I-l-sartan and (A) 10 μmol/L of losartan; (B) PD123319; or (C), (D-Ala7)-Ang-(1-7) (D-Ala). Data are expressed as mean ± SEM; n=5 per group (3 males, 2 females) except for D-Ala/PM-BMX (n=2 males); *P<0.01 vs CON.
similar between nonexposed and BMX-exposed animals for ACE (496±111 vs 388±70 U), ACE2 (161±54 vs 172±54 U), and nepilysin (297±90 vs 245±3 U; n=3 males per group), respectively. Assessment of non-ACE-dependent pathways for Ang II (absence of chymostatin) did not reveal intracellular conversion of Ang I to Ang II in either CON or treated animals (data not shown).

Discussion

Glucocorticoids are widely administered to mothers who are at risk for preterm delivery to facilitate maturation of pulmonary function of the developing fetus. However, exposure to excess endogenous or exogenous glucocorticoids during the perinatal period may “program” maldevelopment of the brain and kidney of the offspring for metabolic and cardiovascular disease in adulthood.2–4,18–20 We characterized the effects of antenatal exposure to the synthetic glucocorticoid BMX during the 80th day of gestation; this time corresponds to the peak period of nephrogenesis, as well as the time synthetic glucocorticoids are routinely administered to expectant mothers in jeopardy of premature delivery. The present results find a sustained increase in blood pressure in exposed sheep, and also confirm previous findings of a 15% increase in pressure and blood pressure variability of adult sheep exposed antenatally to BMX.5,8 The AT1 receptor antagonist candesartan normalized blood pressure in exposed sheep, but it did not change pressure in CON animals; this indicates activation of the Ang II-AT1 receptor axis in the adult animals exposed to glucocorticoids.5,8 Indeed, the current results demonstrate an increase in the ratio of AT1 to AT2 receptors within the nuclear and plasma membrane compartments of the renal cortex from exposed animals. The altered binding profile in glucocorticoid-exposed animals was functionally associated with an enhanced stimulation of ROS by Ang II via AT1 receptors, and a reduction in the AT2-dependent generation of NO. Moreover, the generation of NO by Ang-(1-7) was attenuated in the nuclear fraction isolated from the cortex of the BMX-exposed sheep. We did not find changes in angiotensin receptor subtypes within the renal medulla nor find intracellular alterations in the peptidases ACE, ACE2, or neprilysin of BMX-treated sheep; this suggests selective effects of antenatal steroid exposure on cortical angiotensin receptors. The functional responses for Ang II and Ang-(1-7)
were correlated with blood pressure among both nonexposed and steroid-exposed sheep.

We previously reported that Ang II stimulates ROS through the AT1 receptor within renal nuclei from both rat and sheep.16,17 Furthermore, this effect was markedly pronounced in nuclei isolated from older adult sheep, which exhibited a greater proportion of AT1 sites compared with young adult sheep.16 The current study revealed that the Ang II-dependent ROS response was 3-fold higher in younger adult sheep following antenatal BMX exposure. Our data support earlier findings by Roghair and colleagues that report an enhanced constriction of coronary vessels by Ang II and increased AT1 protein expression, as well as an exaggerated ROS response in glucocorticoid-exposed sheep.21,22 The ROS response to Ang II in the present study was reduced with LOS, but exacerbated by PD123319, suggesting that the AT2 receptor may counterbalance the actions of an activated Ang II-AT1 receptor pathway.23 The enhanced response may reflect a reduction in the AT2-dependent signaling pathways that would normally attenuate Ang II-AT1 receptor-coupled intracellular events.23 This does not necessarily imply that the AT1 receptor also exerts an inhibitory influence on AT2 receptor-dependent events within nuclei, because LOS did not exacerbate the Ang II-AT1 receptor pathway for NO. Nonetheless, an increased ratio of AT1 to AT2 receptors is consistent with the more pronounced effects of Ang II on sodium reabsorption and renal vascular resistance in the adult sheep following antenatal BMX exposure.11 Moreover, the reduction in the proportion and functional response of the AT2 receptor supports the findings of reduced AT2 mRNA and/or protein levels in the offspring of protein-restricted rats, a rodent model of fetal programming that exhibits higher glucocorticoid levels in utero.24–26

In addition to alterations in the AT1 to AT2 receptor ratio, the NO response to Ang-(1-7) was attenuated in the kidney of the exposed sheep. The extent of D-Ala competition for sarthran binding in the renal cortex was significantly lower in the BMX-exposed group as well. The stimulation of NO by Ang-(1-7) was abolished by D-Ala, but not by LOS or PD123319. These data suggest that the Ang-(1-7)/Mas receptor may also be downregulated by antenatal glucocorticoid exposure. We did not find differences in the intracellular complement of peptidases that influence Ang II and Ang-(1-7) expression; however, it is possible that signaling events downstream from the Ang-(1-7) receptor may be altered in the BMX-exposed sheep. Several reports suggest that Ang-(1-7)-dependent activation of intracellular phosphatases mitigate the actions of the Ang II-AT1 receptor pathway in proximal tubules and in other cell types,27–29 although the nuclear signaling events in the current study, as well as the overall cellular pathways in fetal programming, remain to be elucidated. Nonetheless, a reduction in Ang-(1-7)/NO tone supports previous findings that BMX exposure was associ-
ated with an attenuated natriuretic and diuretic response to exogenous Ang(1-7), as well as with the overall natriuretic actions of the peptide on the proximal tubule.12,30–32 Indeed, in CON sheep, the Mas receptor protein was evident on proximal tubules, thick ascending limb, and collecting ducts of the kidney that are key sites for sodium reabsorption.15 However, additional studies are necessary to determine cell types within the kidney that reflect alterations in receptor subtype and response following BMX exposure. We note that the Ang-(1-7) antagonist D-Ala blocked the Ang II-dependent NO response (Figure 4). PD123319 did not inhibit NO synthesis by Ang-(1-7) (Figure 5); therefore, it is unlikely that the Ang II response reflects the conversion to Ang-(1-7) on nuclei by ACE2, and is more feasible that the concentration of D-Ala employed in our studies may interact with the AT2 receptor.

Emerging evidence reveals that the kidney expresses an intracellular system in which receptors localized within distinct cellular organelle mediate the actions of Ang II and Ang-(1-7).14–16,33–35 There is a high density of intracellular AT1 sites localized to the nuclear fraction in both the cortical and medullary areas of the rat kidney.33–35 We also find nuclear AT1 sites in the cortex of sheep kidney; however, functional AT2 and Ang-(1-7)/Mas receptors are evident in cortical nuclei as well.14–16 Intracellular alterations in the ratio of AT1 to AT2 and/or Ang-(1-7) receptors may influence gene expression that ultimately contributes to programming mechanisms and a sustained increase in blood pressure following glucocorticoid exposure. Zhuo and colleagues report that Ang II, via the AT1 receptor, directly stimulates mRNA transcripts for the sodium hydrogen exchanger, MCP-1, and TGF-β in isolated cortical nuclei.35 Their preliminary studies also show that intracellular expression of nonsecreted Ang II in the proximal tubule increases blood pressure that is abrogated by LOS treatment.36 Natell and colleagues find that Ang II increases the mRNA expression of NFkB to a greater extent in isolated nuclei from cardiomyocytes than in intact cells.37 Clearly, the upregulation of sodium transporters such as the sodium hydrogen exchanger or the enhanced expression of inflammatory molecules may contribute to renal dysfunction and an elevation in blood pressure; however, whether these mechanisms are operative in this model of programming remains to be established.

Finally, we previously reported that BMX exposure induces a similar increase in blood pressure in female and male sheep at 6 months and 36 months of age, as well as a comparable reduction (approximately 25%) in the number of glomeruli.12,38 The existing literature on sex differences in fetal programming is somewhat equivocal regarding the extent to which females exhibit cardiovascular protection that may reflect species differences, as well as the timing and nature of the programming event.21,22,38–42 The current study did not distinguish sex specific alterations in receptor expression or function because of the low number of females in the BMX-exposed group. We have noted sex differences in sodium excretion and natriuretic responses to exogenous Ang-(1-7) following an acute sodium load in CON and exposed sheep that vary with age.11,12 It is entirely possible that different, although as of yet undefined, mechanisms contribute to the increase in blood pressure in male and female sheep exposed to antenatal glucocorticoids; additional studies are necessary to identify these potential mechanisms. Additional studies are also required to determine whether alterations to intracellular angiotensin receptors precede the changes in blood pressure or contribute to the progression of fetal-programmed hypertension. Moreover, at this point it is not evident as to the underlying mechanisms whereby acute fetal BMX exposure alters the relative proportion of the 3 receptor subtypes within the renal cortex. Finally, although the AT1 site was the predominant subtype in the renal medulla of both CON and BMX-exposed sheep, it is possible that BMX exposure may also influence signaling pathways downstream from the AT1 receptor, particularly given the importance of ROS and NO in medullary function.43

Perspectives
Insults of various types occurring during the critical period of fetal development may have prolonged effects on the offspring in adulthood. Antenatal exposure to excess endogenous or exogenous glucocorticoids, particularly those administered to mothers at risk for preterm delivery, may predispose the offspring to metabolic and cardiovascular disease, including hypertension and renal injury. The effects of steroid exposure on the kidney and kidney development may induce mechanisms that lead to oxidative stress through increased ROS and concomitant decreases in NO. Indeed, steroid-induced programming events may promote a state of accelerated aging that encompasses alterations in multiple angiotensin receptors and their requisite signaling pathways.44 Thus, potential therapeutic approaches in fetal-programmed hypertension should perhaps target all 3 receptor subtypes to reset the balance of both the extracellular and intracellular renin-angiotensin system.

Sources of Funding
This work was supported by grants from the National Institutes of Health HD17644, HD47584, HL-56973, and HL51952. Hossam Shaltout is an Assistant Professor in the Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Egypt.

Disclosures
None.

References

Glucocorticoid-Induced Fetal Programming Alters the Functional Complement of Angiotensin Receptor Subtypes Within the Kidney
TanYa M. Gwathmey, Hossam A. Shaltout, James C. Rose, Debra I. Diz and Mark C. Chappell

Hypertension. 2011;57:620-626; originally published online January 10, 2011;
doi: 10.1161/HYPERTENSIONAHA.110.164970
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/57/3/620

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/