Sympathetic Activation in Chronic Kidney Disease
Out of the Shadow

Markus P. Schlaich

See related article, pp 846–851

Chronic kidney disease (CKD) is a global and growing health problem. In the United States alone, an estimated 20 million people are affected by CKD, equating to ∼13% of the adult population.1 While carrying an increased risk for the development of end-stage renal disease (ESRD), the major threat to patients with CKD is the associated morbidity and mortality from cardiovascular causes, which is up to ∼30 times higher than in the general population. Interestingly, the single most common cause of death in patients with ESRD is sudden cardiac death, mainly attributable to ventricular arrhythmias. This is perhaps not surprising given the substantially elevated sympathetic drive commonly encountered in ESRD patients. Indeed, elevated plasma norepinephrine levels have been shown to be predictive of both survival and incidence of cardiovascular events in this patient cohort.2 More recently, it was demonstrated that patients with CKD and known coronary artery disease are also at higher risk of sudden cardiac death, which was independently associated with the decline in estimated glomerular filtration rate (eGFR; hazard ratio of 1.11 per 10 mL/min decline in eGFR). Although this example intuitively suggests an important role of sympathetic nervous system activation in adverse outcomes associated with chronic and ESRD, there are several additional lines of persuasive evidence for such a role from recent clinical studies, as described below.

Increased concentrations of plasma catecholamines and enhanced sensitivity to norepinephrine paired with the observation of a pronounced hypotensive effect in response to adrenergic inhibition with clonidine provided initial evidence of sympathetic hyperactivity in patients with CKD. In 1992, Converse et al3 reported that muscle sympathetic nerve activity (MSNA), as assessed by microneurography, is increased in patients with ESRD undergoing hemodialysis. Interestingly, correction of uremia by renal transplantation did not result in normalization of sympathetic nerve activity,4 which was only abolished by bilateral nephrectomy, suggesting that sympathetic activation is driven by the diseased native kidneys.3,4 It then became evident that increased sympathetic nerve activity is already present in compensated chronic renal failure and, more recently, that increased MSNA is associated with a composite of all-cause mortality and nonfatal cardiovascular events in a small cohort of CKD patients.5

Although striking, the described associations between sympathetic activation and moderate-to-severe chronic and end-stage renal failure do not necessarily establish a cause-effect relationship, nor are they proof of the concept that direct inhibition of sympathetic activation may translate into better outcomes in these patients. However, an elegant study by Grassi et al published in this issue of Hypertension6 provides further evidence for a crucial involvement of the sympathetic nervous system already in early stages of CKD.

In contrast to previous studies, the cohort under investigation included a relatively large number of hypertensive patients, 73, with normal or moderately impaired renal function as assessed by eGFR using the Modification of Diet in Renal Disease Study formula. All 42 of the patients with CKD had undergone renal biopsies to establish the cause of renal failure and were closely matched with the 31 hypertensive patients with normal renal function with regard to age, blood pressure, body mass index, and other potential confounding factors. Importantly, patients with renal and cardiac comorbidities assumed to independently affect sympathetic activation, such as autosomal dominant polycystic kidney disease, heart failure, and others, were excluded. Using microneurography, the investigators were able to demonstrate the following: (1) patients with CKD displayed MSNA values greater than controls; (2) MSNA increased progressively when patients were divided into tertiles according to the level of eGFR; and (3) MSNA was significantly and inversely correlated with the eGFR for the entire cohort (r = −0.59; P < 0.001). Although average plasma norepinephrine levels were higher in CKD patients, no correlation was evident between plasma norepinephrine and eGFR. This is perhaps not surprising given the limited value of plasma norepinephrine as a marker of sympathetic activation. Heart rate was also significantly higher in CKD patients, perhaps indicating increased sympathetic outflow to the heart in these patients. This would also be consistent with the more pronounced left ventricular mass index observed in these patients in view of the established role of norepinephrine as a cardiotropic factor.

There are, however, also several limitations that need to be taken into account. First, volume status was only assessed clinically, which can be misleading and may have affected MSNA. Second, participating patients continued their antihypertensive regimen throughout the study with the exception...
of β-blockers, which were withdrawn 1 week before the study. The fact that the distribution of antihypertensive drug classes used was similar in the 2 groups does not rule out that CKD patients could respond differently to these drugs, particularly with regard to their effects on sympathetic activity, which can be reduced by renin-angiotensin system inhibitors and increased by calcium channel blockers. Third, the addition of a cohort of patients with CKD and normal blood pressure (without antihypertensive medication) would have been useful to render the results even more compelling.

Where to go from here? Is it time for routine use of effective strategies to target the sympathetic nervous system directly in patients with CKD? Are sympatholytic agents safe in CKD and ESRD? Will sympathetic inhibition halt or at least slow further deterioration of renal function and/or proteinuria? Will sympathetic inhibition beneficially influence cardiovascular outcomes in these patients?

Although some of these questions are not yet conclusively resolved, it appears inevitable to bring the sympathetic nervous system out of the shadow and into the minds of the clinicians managing these patients. The clinical evidence for the adverse consequences of increased sympathetic activation is further accumulating and strongly supported by a large body of experimental evidence indicating that sympathetic activation, rather than being a consequence, is an early event in the pathophysiology of chronic renal failure and that various forms of renal injury even without alterations of renal function can activate the sympathetic nervous system, predominantly via afferent signals of sensory renal nerves7 (Figure). From a therapeutic point of view, centrally acting sympatho-inhibitory drugs such as the imidazoline-receptor agonist moxonidine have been shown to be safe and effective both in CKD and ESRD patients.8 In addition to the reduction in sympathetic activity, there is evidence for a blood pressure–independent renoprotective effect of the drug as demonstrated by a reduced decline of eGFR in CKD patients when compared with an equipotent dose of a calcium channel blocker⁸ and by a favorable effect on microalbuminuria in the absence of blood pressure changes in patients with type 1 diabetes mellitus and optimal blood pressure control.9 Importantly and consistent with the data presented by Grassi et al⁶ in this issue, a previous study also found that sympathetic activity remains elevated in CKD patients despite adequate...
blood pressure control achieved by standard antihypertensive regimens, including renin-angiotensin system inhibition. The observation of a positive correlation between MSNA and increased left ventricular mass in these CKD patients indeed indicates that additional sympatho-inhibitory therapy may well be beneficial. Studies are currently being conducted to further substantiate the protective effects of direct sympatho-inhibitory treatment.

Lastly, the availability of a novel approach using catheter-based radiofrequency ablation technology to directly and selectively target both efferent and afferent renal nerves to functionally denervate the human kidney is likely to shed some more light into the pathophysiologic mechanisms underpinning the striking association between sympathetic activation and its adverse consequences in patients with CKD.

Sources of Funding
M.P.S. is supported by a National Health and Medical Research Council Senior Research Fellowship and has received research funding from the National Health and Medical Research Council, Abbott, and ARDIAN Inc.

Disclosures
M.P.S. is a member of the Solvay Hypertension Steering Committee and has received lecture and/or consulting fees from Solvay, Abbott, Servier, Astra Zeneca, Boehringer Ingelheim, Novartis, and ARDIAN, Inc, on topics relevant to this article.

References
Sympathetic Activation in Chronic Kidney Disease: Out of the Shadow
Markus P. Schlaich

Hypertension. 2011;57:683-685; originally published online February 7, 2011;
doi: 10.1161/HYPERTENSIONAHA.110.167189

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/57/4/683

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/