Mixed Messages on Blood Pressure Goals

Aram V. Chobanian

See related article, pp 1061–1068

The management of hypertension has represented one of the most important therapeutic successes of the past 50 to 60 years. The capability now exists to lower blood pressure (BP) effectively and with relatively minimal adverse effects in most hypertensive individuals. The debate regarding therapy has shifted from whether lowering BP is beneficial to such issues as the relative benefits and risks of individual antihypertensive medications, their long-term effects on cardiovascular disease (CVD) and chronic renal disease outcomes, and the optimal BP goals of therapy in different clinical conditions.

Based on extensive clinical trial data, general agreement has existed that lowering elevated BP to <140 mm Hg systolic and 90 mm Hg diastolic BP is beneficial. Lower BP goals have been suggested on the basis of epidemiological and observational data indicating that CVD risk increases progressively from BP levels as low as 115/75 mm Hg.1 The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure recommended a goal BP of ≤130/80 mm Hg in hypertensive patients with chronic renal disease or diabetes mellitus,2 consistent with the recommendations of the National Kidney Foundation and the American Diabetes Association. Subsequently, the American Heart Association expanded this list by recommending BP targets <130/80 mm Hg for patients with preexisting coronary heart diseases, angina pectoris, and acute coronary syndromes or those at high risk for CVD, and BP <120/80 mm Hg for those with left ventricular dysfunction.3 Generally similar recommendations have been made by other national or international groups as well. However, the available evidence may not justify such an aggressive approach.

For example, the African American Study of Kidney Disease and Hypertension compared the effects of goal BP of ≤140/90 mm Hg versus ≤125/75 in blacks with chronic renal disease (glomerular filtration rate: 20 to 65 mL/min per 1.73 m²).4 The average BP achieved in the usual BP group was 141/85 mm Hg and 128/78 mm Hg in the aggressively treated group. However, no significant difference in the rate of change of glomerular filtration rate was observed between groups. As with other studies, considerable overlap in achieved BP levels occurred between the 2 groups. More than one half of those randomized to the lower BP goal group failed to reach the specified goal. Davis et al5 in the present issue of Hypertension have provided an interesting post hoc analysis of the African American Study of Kidney Disease and Hypertension combining data on BP levels achieved by all of the trial patients. They found that those in this intensively treated group who failed to reach goal BP were phenotypically different than those in the usual care group who achieved similar BP levels. They had more comorbidities and a greater rate of deterioration of renal function than the usual care group with comparable achieved BP. They also were less adherent to therapy. Such baseline differences probably contributed to the observed relationship between the achieved mean arterial BP and rate of deterioration of glomerular filtration rate and clinical composite outcomes, thereby casting doubt on the value of using African-American Study of Kidney Disease and Hypertension data on achieved BPs to justify aggressive BP lowering.

Another trial that examined different BP goals was the recently reported Action to Control Cardiovascular Risk in Diabetes Trial (ACCORD), a randomized, open-labeled study of type 2 diabetic individuals whose systolic BPs were treated to target levels of either <140 mm Hg or <120 mm Hg.6 Despite an average BP difference of 14/6 mm Hg between the groups, no significant difference in the primary outcome (composite of nonfatal myocardial infarction, stroke, or death from CVD causes) was present, although the intensively treated individuals did have significantly fewer strokes than the standard-treatment group. The results in ACCORD have been interpreted as differing from those in the United Kingdom Prospective Diabetes Study in which the group with the lower BP target developed less CVD than the standard treatment group.7 However, the goal BP in the aggressive treatment group of United Kingdom Prospective Diabetes Study was ≤150/85 mm Hg, and the average BP achieved in this cohort was 144/82 mm Hg, a level similar to that achieved in the standard treatment group of ACCORD.

Another relevant trial to consider was the HOT Study in which hypertensive patients with pretreatment diastolic BP in the 100 to 115 mm Hg range were randomly assigned to 3 groups and treated with felodipine and other antihypertensive medications to achieve goal diastolic BPs of ≤90, ≤85, or ≤80 mm Hg.8 No significant difference in primary outcomes was present between groups, although, unlike ACCORD, the most aggressively treated diabetics had fewer CVD events than those in the least aggressively treated group. When the data were analyzed according to achieved BP in the total group of individuals, the lowest rate of CVD events was observed at an average BP of 139/83 mm Hg.

In addition, a post hoc analysis of achieved BP in the Verapamil SR-Trandolapril Study, which was designed to...
compare the effects of verapamil-trandolapril versus atenolol-
hydrochlorothiazide combinations in hypertensive patients
with coronary heart disease, was reported recently.9 In the
diabetic cohort, no significant differences were present in
coronary outcomes between individuals with average systolic
BP <130 mm Hg versus those with systolic levels in the 130
to 139 mm Hg range, but those persons with average systolic
BPs ≥140 mm Hg had a higher rate of coronary complica-
tions. In another post hoc analysis of the Verapamil SR-
Trandolapril Study, the incidence of myocardial infarction
but not stroke was greater at achieved levels of diastolic BP
<70 mm Hg.10

Despite problems associated with the intention-to-treat trial
design, it clearly remains the best approach for analyzing
the results of comparative clinical trials, such as African-
American Study of Kidney Disease and Hypertension and
ACCORD. The heterogeneity of populations recruited into
large trials is always a problem but is difficult to eliminate,
particularly if the results of a study are to be relevant to the
general patient population. Importantly, as reported in the
article by Davis et al9 and as is probably relevant to other
clinical trials, those who do not respond well to antihyper-
tensive therapy may differ clinically from the better respond-
ers. Such differences may complicate the interpretation of the
data obtained, particularly if post hoc analyses of achieved
BP are made.

Because clinical trials explore more and more nuances of
therapy, other aspects of the trial design should be kept in
mind. Comparison with outcome data from previous trials
may become problematic when calculating statistical power
and required sample size. For example, patients entering later
trials, such as ACCORD, may be at lesser overall CVD risk
than those in previous studies because of the expanded use of
such drugs as statins, aspirin, and other platelet inhibitors.
Such therapies could influence the biological and clinical
responses of study cohorts when BP is lowered. In addition,
the incremental benefits of antihypertensive therapies may be
more difficult to demonstrate in those at lower CVD risk.

What can we conclude about BP goals from our current
state of knowledge? For the general population, impressive
epidemiological data would support a BP goal of ≤120/
80 mm Hg. For relatively young hypertensive individuals,
particularly those without evidence of CVD or chronic renal
disease, a BP goal of ≤130/80 mm Hg or perhaps 120/
80 mm Hg would be reasonable. However, the benefits of
lowering BP ≤130/80 mm Hg still appear uncertain in such
groups as the elderly, those with coexisting CVD, chronic
renal disease, or diabetes mellitus and those otherwise at high
CVD risk. Furthermore, as noted in ACCORD, the added
therapy required to achieve the lower BP goal can be
associated with additional adverse effects from medications.
Admittedly, clinical trials are conducted over relatively brief
periods, which may be inadequate to demonstrate benefits of
lower levels of BP. However, because of the lack of clarity on
these issues, I think that the most reasonable approach at
present would be to have a general BP goal of ≤140/
90 mm Hg in the majority of hypertensive individuals with
lower targets to be individualized and based on clinical
judgment. Some may consider this approach as overly con-
servative, but the issues are complex, and mixed messages on
BP goals have been emanating from the clinical trials. The
results of the Systolic Blood Pressure Intervention Trial,
which is in progress, will hopefully help define these issues
further. In the interim, with ≥50% of hypertensive persons in
the United States still not controlled to <140/90 mm Hg, the
greatest benefits of treatment will continue to be in that
group.

Disclosures

None.

References
1. Lewington S, Clarke R, Qizilbash N, Peto R, Collins R: Prospective
Studies Collaboration. Age-specific relevance of usual blood pressure to
vascular mortality: a meta-analysis of individual data for one million
2. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL,
Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; National
Heart, Lung, and Blood Institute Joint National Committee on Prevention,
Detection, Evaluation, and Treatment of High Blood Pressure; National
High Blood Pressure Education Program Coordinating Committee. The
seventh report of the Joint National Committee on Prevention, Detection,
3. Rosendorff C, Black HR, Cannon CP, Gersh BJ, Gore J, Izzo JL Jr,
Kaplan NM, O’Connor CM, O’Gara PT, Oparil S; American Heart
Association Council for High Blood Pressure Research; American Heart
Association Council on Clinical Cardiology; American Heart Association
Council on Epidemiology and Prevention. Treatment of hypertension in
the prevention and management of ischemic heart disease: a scientific
statement from the American Heart Association Council for High Blood
Pressure Research and the Councils on Clinical Cardiology and Epide-
4. Wright JT Jr, Bakris G, Greene T, Agoda LY, Appel LJ, Charleston J,
Cheek D, Doublas-Baltimore JG, Gassman J, Glassock R, Hebert L,
African American Study of Kidney Disease and Hypertension Study
Group. Effect of blood pressure lowering and antihypertensive drug class
on progression of hypertensive kidney disease: results from the AASK
Lipkowitz MS, Pogue VA, Wright JT Jr, for the African American Study
of Kidney Disease and Hypertension Research Collaborative Group.
Limitations of analyses based on achieved blood pressure: lessons from
the African American Study of Kidney Disease and Hypertension Trial.
6. ACCORD Study Group, Cushman WC, Evans GW, Byington RP, Goff
MA, Probstfield JL, Katz L, Peterson KA, Friedewald WT, Buse JB,
Bigger JT, Gerstein HC, Imaizumi T; Effects of intensive blood-
1575–1585.
7. UK Prospective Diabetes Study Group. Tight blood pressure control
and risk of macrovascular and microvascular complications in type 2 diabetes.
8. Hansson L, Zanchetti A, Carruthers SG, Dahlof B, Elmfeldt D, Julius S,
Menard J, Rahn KH, Wedel H, Westerling S. Effects of intensive blood-
pressure lowering and low-dose aspirin in patients with hypertension:
principal results of the Hypertension Optimal Treatment (HOT) Ran-
9. Cooper-DeHoff RM, Gong Y, Handberg EM, Bavry AA, Denardo SJ,
Bakris GL, Pepine CJ; Tight blood pressure control and cardiovascular
outcomes among hypertensive patients with diabetes and coronary artery
Kolloch R, Benetos A, Pepine CJ; Dogma disputed: can aggressively
lowering blood pressure in hypertensive patients with coronary artery
Mixed Messages on Blood Pressure Goals
Aram V. Chobanian

Hypertension. 2011;57:1039-1040; originally published online May 9, 2011;
doi: 10.1161/HYPERTENSIONAHA.111.170514

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/57/6/1039

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/