Adipose Tissue-Derived Soluble Fms-Like Tyrosine Kinase 1 Is an Obesity-Relevant Endogenous Paracrine Adipokine

Florian Herse, John N. Fain, Juergen Janke, Stefan Engeli, Christian Kuhn, Norbert Frey, Herbert A. Weich, Astrid Bergmann, Kai Kappert, S. Ananth Karumanchi, Friedrich C. Luft, Dominik N. Muller, Anne C. Staff, Ralf Dechend

Abstract—Adipose tissue growth depends on angiogenesis. We tested the hypothesis that adipose tissue produces factors relevant to angiogenesis. We obtained fat biopsies in 2 different patient cohorts, cultured adipose-derived stem cells and studied mature adipocytes. We performed microarray, RT-PCR, and Western blotting; studied a rat obesity/metabolic syndrome model; and conducted viral gene transfer experiments in leptin-deficient mice. The microarray identified the splice variant of the vascular endothelial growth factor receptor, the soluble fms-like tyrosine kinase 1 (sFlt-1), as an antiangiogenesis candidate. We verified the expression findings and found that sFlt-1 was secreted by isolated mature human adipocytes. Tumor necrosis factor-α decreased sFlt-1 expression in mature adipocytes, whereas hypoxia had no effect. Separating cells from adipose tissue showed that the highest sFlt-1 expression was present in adipose-tissue nonfat cells rather than in the adipocytes themselves. We also found that sFlt-1 expression and sFlt-1 release by adipose-tissue explants were inversely correlated with body mass index of the corresponding patients but was directly correlated with adiponectin expression. In the obesity/metabolic syndrome rat model, we observed that circulating sFlt-1 levels and sFlt-1 expression in adipose tissue were also inversely correlated with body weight. To model our putative antiangiogenic factor further, we next overexpressed sFlt-1 by viral transfer in a mouse genetic model of leptin deficiency and observed that the transfected mice gained less weight than controls. We suggest that sFlt-1 could act as a paracrine factor inhibiting adipose tissue growth. Local sFlt-1 may regulate angiogenic potential and thereby influence adipose tissue mass. (Hypertension. 2011;58:37-42.) ● Online Data Supplement

Key Words: adipogenesis ■ soluble fms-like tyrosine kinase receptor 1 ■ sFlt1 ■ obesity ■ adipocytes

Angiogenesis is essential to many processes, including development, reproduction, and repair.1-3 Pathological angiogenesis is not only important for tumor growth but also for several nonneoplastic, “angiogenesis-dependent” diseases, such as peptic ulcers, ocular neovascularization, rheumatoid arthritis, atherosclerosis, and obesity.3-5 In contrast to most adult tissues, adipose tissue exhibits an enormous plasticity and can grow, regress, and regrow depending on needs and behavior.6-8 Recent work showed that obesity involves the coupling of angiogenesis and angiogenesis.3,9 Angiogenesis regulates adipose tissue by affecting the number, growth, and remodeling of the adipose tissue vasculature.4,10-12 Adipose tissue is highly vascular, because several capillaries surround each adipocyte.5,13,14 Accordingly, adipose tissue has been used clinically to promote wound healing and revascularization.3,15 Furthermore, adipose tissue is an expandable endocrine gland that produces and secretes growth factors, free fatty acids, hormones, and cytokines, including leptin, adiponectin, vascular endothelial growth factor (VEGF), interleukin (IL) 6, and tumor necrosis factor (TNF)-α. VEGF is responsible for most of the angiogenic capacity and is upregulated during angiogenesis.6,7,15 In growing adipose tissue, vessels contribute to adipogenesis by switching on angiogenic pathways, thereby altering the balance between angiogenic factors and their inhibitors.3,14 Local endothelial cells produce several growth factors and cytokines and communicate with adipocytes in a paracrine fashion to promote their growth and expansion.3,13,16 Adipocytes may also signal endothelial cells by producing proangiogenic factors, inhibitors, and cyto-
kines, which, in turn, determine vessel growth and remodeling. To gain further insight into such processes, we investigated the production factors capable of modifying net angiogenic balance in adipose tissue.

Materials and Methods

We obtained adipose tissue from women after internal review board approval with informed written consent. A detailed method section for collecting patients specimens and cell isolation is described in the online Data Supplement (please see http://hyper.ahajournals.org).

RNA Isolation, Microarray, and RT-PCR

Our microarray experiments of adipose tissue that adhere to Minimum Information About a Microarray Experiment guidelines, are described elsewhere. Total mRNA was isolated with the Qiagen RNAeasy mini kit (including the RNase-Free DNase set) (Qiagen). RNA was reverse transcribed into cDNA by using the Transcriptor First Strand cDNA synthesis kit from Roche Diagnostics and were analyzed by real-time quantitative PCR on an ABI 7500 sequence detection system (PE Biosystems) or Roche LightCycler 480 Real-Time RT-PCR system (Roche Diagnostics). Primer and probes were designed with PrimerExpress 2.0 (Applied Biosystems). Sequences are indicated in the online Data Supplement.

Western Blot and ELISA

Mature adipocytes were separated from medium after indicated period and lysed by vortexing in radioimmunoprecipitation assay buffer (Cell Signaling). After centrifugation, protein was used for sodium dodecyl sulfate-gel electrophoresis, followed by blotting on membrane. The membrane was stained specific for Flt-1 (antihuman VEGF receptor-1/Flt-1, ReliaTech) and β-actin (13E5; Cell Signaling). Densitometric analyses were done by Image-J 1.41 software (National Institutes of Health). The soluble splice variants of the VEGF fms-like tyrosine kinase receptor 1 (sFlt-1) levels in plasma or medium were determined by ELISA (human soluble VEGF receptor 1/Flt-1 Quantikine ELISA Kit, R&D Systems). Food consumption was determined. Local authorities (LAGeo, Berlin, Germany) approved the animal protocols that complied with criteria outlined by the American Physiological Society.

Statistics

All of the parameters were tested for normal distribution, and group differences were analyzed by t test, ANOVA, Mann-Whitney U test, or χ² test as appropriate. Relations between parameters were examined by means of Pearson correlation coefficients. P<0.05 was considered statistically significant.

Results

sFlt-1 Expression in Human Adipose Tissue

The microarray showed that sFlt-1 was expressed in human adipose tissue. We confirmed the finding with real-time RT-PCR. sFlt-1 expression was 10-fold higher (P<0.01) in mature adipocytes freshly isolated from human subcutaneous adipose than in adipose-derived stem cells (Figure 1A). Isolated human mature adipocytes stably secreted sFlt-1 protein into the medium (Figure 1B). Adipose-derived stem cell did not secret sFlt-1 during culturing. We then focused on sFlt-1 release from adipose-tissue nonfat cells, the undigested tissue matrix, the stromal vascular (SV) cells, and mature adipocytes (Figure 1C). We found that nonfat cells in adipose tissue released most of the sFlt-1, whereas the contribution of mature adipocytes and SV cells was similar.

sFlt-1 Regulation in Isolated Mature Human Adipocytes

We reasoned that tissue hypoxia could influence angiogenesis and sFlt-1 production. We incubated isolated mature adipocytes in normal (20% O₂) or 3% O₂ for 48 hours, which increased VEGF-A expression (3.8-fold change; P<0.01) but did not alter sFlt-1 expression (Figure 2A). Insulin and angiotensin II also had no effect, whereas TNF-α increased VEGF-A expression (fold change: 2.3; P<0.05) while decreasing sFlt-1 expression (3.8-fold; P<0.05) in the cells (Figure 2B). We confirmed these findings with Western blotting (Figure 2C). Quantitative analysis substantiated the reduced sFlt-1 protein expression on TNF-α stimulation (Figure 2D).

Figure 1. Soluble fms-like tyrosine kinase 1 (sFlt-1) expression in adipose tissue and its compartments. A, mRNA expression of sFlt-1 in isolated adipose-derived stem cells (ADSCs) and isolated mature adipocytes from human adipose tissue. The 10-fold differences was significant with *P<0.01*. B, sFlt-1 release from ADSCs incubated for 5 days and mature adipocytes incubated for 3 or 5 days. *P<0.05* for 5 days vs 3 days. (n.d. indicates not detectable; n=4). C, sFlt-1 release from adipose tissue nonfat cells, stromal vascular cells (SV cells), and mature adipocytes is shown. sFlt-1 production stems from adipose tissue nonfat cells. Values as mean±SEM; *P<0.01 for SV cells and mature adipocytes vs adipose tissue nonfat cells (n=12).
Correlation of sFlt-1 and Body Mass Index
We compared sFlt-1 expression in subcutaneous fat from women across a broad range of body mass index (BMI) values. The sFlt-1 expression was inversely correlated with BMI ($r = -0.36; P = 0.002$; Figure 3A) and directly correlated with adiponectin expression ($r = 0.33; P = 0.01$; Figure 3B). In the patients with high circulating TNF-α levels (first quartile), the sFlt-1 expression in fat tissue was significantly lower than in those with lower TNF-α levels (fourth quartile; Figure 3C). In a different and independent cohort, we confirmed the same inverse relationship ($r = -0.55; P = 0.008$) between BMI and Flt-1 release by subcutaneous fat, across a range of BMI values (Figure 3D). These findings were not confined to subcutaneous fat, because Flt-1 release by omental fat was

Figure 2. Soluble fms-like tyrosine kinase 1 (sFlt-1) expression regulation in isolated mature adipocytes incubated for 48 hours. A, Hypoxia (3% O$_2$) effects on vascular endothelial growth factor (VEGF)-A expression and sFlt-1 expression compared with room air (21% O$_2$). Hypoxia caused mature adipocytes to overexpress VEGF-A but not sFlt-1. B, Same experiment with tumor necrosis factor (TNF)-α instead of hypoxia. TNF-α stimulated VEGF-A expression but diminished sFlt-1 expression.

Figure 3. Obesity and soluble fms-like tyrosine kinase 1 (sFlt-1) expression and release in fat tissue. A, Relationship between sFlt-1 mRNA expression and body mass index (BMI) in subcutaneous fat from postmenopausal women ($n = 69$; $r = -0.36; P = 0.002$). B, Relationship between adiponectin and sFlt-1 mRNA expression in the same fat samples ($r = -0.33; P = 0.01$) ($n = 59$). C, sFlt-1 expression in fat tissue of patients with the highest circulating tumor necrosis factor (TNF)-α levels (fourth quartile) and those with the lowest TNF-α levels (first quartile). Values as mean±SEM; *$P < 0.05$. D, Relationship between BMI and sFlt-1 release in subcutaneous fat from a different collective of women ($r = -0.55; P = 0.008; n = 22$). E, Relationship between BMI of these same women and sFlt-1 release by explants of their omental fat ($r = -0.48; P = 0.02; n = 22$).
also inversely correlated with BMI (r = -0.48; P = 0.02; Figure 3E).

The inverse correlation (Figure 4A) between sFlt-1 expression in epididymal fat tissue and body weight (r = -0.74; P = 0.001) was also present in an obese rat model, transgenic for human renin. The male obese rats had a lower sFlt-1 mRNA expression in their adipose tissue compared with age-matched controls (P < 0.01; Figure 4A). Reduced circulating sFlt-1 levels were seen in the obese rats, and an inverse correlation between sFlt-1 level and body weight (r = -0.89; P = 0.001) was also observed in the serum (Figure 4B).

sFlt-1 Overexpression Reduces Obesity

Because induction of insulin resistance by TNF-α reduced adipocyte-specific sFlt-1 expression in cell culture and because we found inverse correlations with BMI and direct correlations with adiponectin, we hypothesized that sFlt-1 overexpression could reduce adipose tissue growth. We, therefore, overexpressed sFlt-1 with adenoviral-gene transfer in a mouse model of obesity (ob/ob mice). Control male mice received adenovirus harboring the β-galactosidase coding gene LacZ. Over 123 days, AdLacZ mice gained more weight than AdsFlt-1 mice (Figure 5A). We could not attribute the difference to food intake (Figure 5B). Circulating sFlt-1 levels increased in ob/ob mice receiving the sFlt-1 gene by a factor of 29-fold but not in control ob/ob mice (Figure 5C). The adipophilin (PLIN2) expression, a marker for lipid accumulation, was also lower in the epididymal fat of the mice receiving sFlt-1 (Figure 5D). We tested whether the ob/ob mice receiving sFlt-1 would have a reduced weight gain as compared with mice receiving LacZ (Figure 5A). Over 68 days, mice receiving sFlt-1 gained significantly (P < 0.05) less weight than control mice.

Discussion

The novel findings in our study are the identification of sFlt-1 production by adipose tissue and the potential regulatory role of this molecule, as a regulator of adipose tissue burden, as suggested by correlations in humans and in a rat model for obesity. We observed that TNF-α downregulates sFlt-1 in isolated mature adipocytes. We underscored this inference by overexpressing sFlt-1 in an established murine obesity model and showed that sFlt-1 influences weight gain and lipid accumulation in this model.

The concept that leaner patients with no signs of insulin resistance have higher sFlt-1 levels in adipose tissue that may prevent angiogenesis and thus minimize obesity represents a novel potential molecular mechanism. In growing adipose tissue, the switch to an angiogenic phenotype represents an imbalanced production of angiogenic factors and inhibitors, resulting in an increased angiogenic net balance. We argue that a reduced secretion of sFlt-1 by adipose tissue is part of this mechanism. Ambati et al. showed that sFlt-1 secretion locally prevents endothelial cell stimulation and subsequent angiogenesis in the cornea. This important goal is achieved by local secretion of sFlt-1 from retinal cells. The stimulus can be interrupted by hyperoxia.

Several groups have shown that hypoxia and angiotensin II upregulate sFlt-1 in endothelial cells, trophoblasts, and other cell types. We showed that sFlt-1 regulation in isolated mature adipocytes differs from that described in placenta and endothelial cells, because hypoxia and angiotensin II had no effect on sFlt-1 expression in mature adipocytes. Nonetheless, TNF-α downregulated sFlt-1 expression. TNF-α is an important overexpressed inflammatory cytokine in adipose tissue in obesity. Genetic TNF-α inhibition restored insulin sensitivity in vitro and in vivo in an earlier study. Chronic treatment with anti–TNF-α antibodies improves insulin sensitivity in both lean and obese patients, indicating that TNF-α may be a major contributor in the pathogenesis of obesity-induced insulin resistance. The molecular mechanisms of TNF-α–induced sFlt-1 downregulation are unknown. Recently, other investigators showed that peroxisome proliferator-activated receptor-δ, concomitant activation of the p53 tumor suppressor, and estrogen receptors induced sFlt-1 transcription. Both factors, peroxisome proliferator-activated receptor and estrogen, are downregulated by TNF-α.

Our data show that lean patients have higher sFlt-1 levels.
In contrast to secretion of proangiogenic factors by adipocytes, our understanding of adipose vessel growth and remodeling by endogenous angiogenesis inhibitors is rudimentary. Thus far, only endostatin, thrombospondin 1, and adiponectin have been identified as genuine adipocyte-derived angiogenesis inhibitors. Adiponectin was inversely correlated with the adipose mass in several studies and may protect against diabetes mellitus, renal disease, and atherosclerosis. Adiponectin levels correlated significantly with sFlt-1 levels in our cohort, which underscores the putatively protective role of adipocyte-derived sFlt-1.

Earlier studies showed that the adipose-tissue angiogenic properties correlate with BMI. Obesity is associated with adipocyte hypertrophy and hyperplasia. These processes are accompanied by angiogenesis, which is essential for adipogenesis and correct tissue function. The vasculature has a causal role in determining adipocyte growth, regression, and physiological functions by controlling the number of microvessels and by remodeling existing vessels. High levels of sFlt-1 might, therefore, restrain adipose tissue growth via inhibition of local angiogenesis. Adipogenesis and angiogenesis uncoupling in adipose tissue occurred in several intervention studies. All showed that disrupting adipose tissue vasculature by angiogenesis inhibitors leads to fat tissue reduction. Rupnick et al documented the phenomenon in ob/ob mice. Bräkenhielm et al showed that the selective angiogenesis inhibitor, TNP-470, prevented obesity in high-caloric, diet-fed mice and in genetically leptin-deficient ob/ob mice. Rupnick et al underscored the variability among the angiogenesis inhibitors regarding effects on body weight. Our sFlt-1 results correspond with those reported by Rupnick et al in their studies of endostatin and thalidomide. Tam et al observed that VEGF inhibition by blockade of the VEGF receptor 2, rather than VEGF receptor 1, prevented diet-induced obesity. They also showed that formation of new vessels in fat tissue during obesity is attributed to VEGF-dependent angiogenesis rather than de novo vasculogenesis.

Finally, we observed that sFlt-1 concentrations were higher in the adipose tissue nonfat cells than in the mature adipocyte cell fraction. The exact nature of the adipose tissue nonfat cells and the SV cells is not known; however, the nonfat cell fraction that we studied probably contains all of the cells resisting collagen digestion, including vascular smooth muscle cells, endothelial cells, and connective tissue fibroblasts. Recently the preparation of the SV subfractions from adipose tissue was described. This technique will be very useful for further investigations. We believe that this finding is particularly important. The implication is that SV cells or other cells are the primary sources for sFlt-1 rather than the mature adipocytes themselves. A similar state of affairs has been described for several other adipokines. For instance, Fain investigated 37 adipokines and found that, for 30, the release was higher in the adipose tissue nonfat cells including SV cells compared with the adipocytes themselves. We suggest a novel regulatory role for sFlt-1 in terms of supporting a link between angiogenesis and fat mass production. However, angiogenesis is complex, and future studies will have to confirm that sFlt-1 expression in adipocytes is indeed inducing local antiangiogenesis. The definite impact of sFlt-1 on adipose tissue development and the role in the cross-talk to endothelial cell warrants further experimental proof. One drawback of our study is that we have tested our constructs only in a single, artificial model of obesity. To gain more insight in the molecular mechanism, adipose-specific overexpression of sFlt-1 and different obesity models should be tested. Our hypothesis has mechanistic and therapeutic implications, which underscore the role of the vasculature in the regulation of fat mass and obesity.

Perspectives

We identified sFlt-1 as a potential angiogenesis regulator in adipose tissue. Although we showed that adipocytes produce...
sFlt-1, other nonfat cells in adipose tissue may be more important. In contrast to the cornea, hypoxia is not a major regulatory mechanism. The robust inverse correlations between sFlt-1 expression and BMI in humans or body weight in rats underscore a potential role of sFlt-1 in regulating obesity. Our preliminary therapeutic trial in a mouse model suggests that the pathway could be therapeutically relevant. Our findings may be relevant to the interrelationship between obesity and hypertension.

Sources of Funding
R.D. was funded by the Deutsche Forschungsgemeinschaft (DE-631/7-1).

Disclosures
None.

References
Adipose Tissue-Derived Soluble Fms-Like Tyrosine Kinase 1 Is an Obesity-Relevant Endogenous Paracrine Adipokine

Florian Herse, John N. Fain, Juergen Janke, Stefan Engeli, Christian Kuhn, Norbert Frey, Herbert A. Weich, Astrid Bergmann, Kai Kappert, S. Ananth Karumanchi, Friedrich C. Luft, Dominik N. Muller, Anne C. Staff and Ralf Dechend

Hypertension. 2011;58:37-42; originally published online May 9, 2011;
doi: 10.1161/HYPERTENSIONAHA.111.171322

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/58/1/37

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2011/05/06/HYPERTENSIONAHA.111.171322.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Adipose tissue-derived sFlt1 is an obesity-relevant endogenous paracrine adipokine

Florian Herse¹, John N. Fain², Juergen Janke¹, Stefan Engeli³, Christian Kuhn⁴, Norbert Frey⁴, Herbert A. Weich⁵, Astrid Bergmann¹,⁵, Kai Kappert⁶, S. Ananth Karumanchi⁷, Friedrich C. Luft¹,¹⁰, Dominik N. Muller¹, Anne Cathrine Staff⁸* and Ralf Dechend¹,⁹*

*contributed equally

¹Experimental and Clinical Research Center, Medical Faculty of the Charité and Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
²Department of Molecular Sciences, College of Medicine, University of Tennessee Health Science Center, Memphis, USA
³Institute of Clinical Pharmacology, Medical School of Hannover, Hannover, Germany
⁴Department of Cardiology, University Schleswig-Holstein, Kiel, Germany
⁵Helmholtz Center for Infection Research, Braunschweig, Germany
⁶Center for Cardiovascular Research, Institute of Pharmacology, Charité-Universitätsmedizin Berlin, Berlin, Germany
⁷Departments of Medicine and Obstetrics and Gynaecology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
⁸Department of Obstetrics and Gynaecology, Oslo University Hospital, Ulleval, and Faculty of Medicine, University of Oslo, Oslo, Norway
⁹Franz-Volhard Klinik, HELIOS-Klinik, Berlin, Germany

Correspondence to:
Florian Herse, PhD
Lindenbergerweg 80
13125 Berlin, Germany
Tel: +4930450540434; Fax +4930450540900; florian.herse@charite.de
Supplemental methods
Patient specimen and cell isolation
For gene expression studies, we used subcutaneous abdominal adipose tissue from 69 postmenopausal healthy women with body mass index (BMI) 20-44 obtained by needle biopsies from the periumbilical region. For the sFlt-1 release studies, we used omental and subcutaneous adipose tissue from 10 obese women (mean BMI=33) who were undergoing open abdominal surgery and from 12 morbidly obese women (mean BMI=46) who were undergoing laparoscopic gastric bypass. Mature adipocytes, their precursor cells called, adipose-derived stem cells (ADSC), and adipose tissue nonfat cells were isolated and cultured as described previously.1-3 Briefly, fat was digesting by collagenase for 2h. The collagenase digest was then separated from the undigested tissue, the adipose tissue nonfat cells, by filtration. The stromal-vascular (SV) cells were separated from mature adipocytes by centrifugation of the filtered collagenase digest while the tissue nonfat cells were those remaining in the tissue after collagenase digestion. The SV cells were defined as those cells isolated by collagenase digestion that were deposited at the bottom of the tube after centrifugation, whereas the mature adipocytes were those cells that floated on the surface.

Primer and probes
Following primer and probes were use in realtim RT-PCR. Soluble Flt1 (GenBank accession number: U01134) 5’-AATCAGAGGTGAGCCTGCAAC-3’ (forward-primer), 5’-TGTTACATCATCCCTGTGCTTT-3’ (reverse-primer), 5’-FAM-AAAAGGCTTTCTCTCGATCTCCAAATTT-TAMRA-3’ (probe); VEGFa (GenBank accession number: NM_003376) 5’-TACCTCCACCTGCAAGTG-3’ (forward-primer), 5’-GTATTCTGCCCCTCTCCCT-3’ (reverse primer), 5’-TAMRA-TCCCAGGCTGCACCAGTGG-FAM-3’ (probe), adiponectin (GenBank accession number: NM_004797) 5’-GCTCTGTGCTGCATCTG-3’ (forward primer), 5’-ACGCTCTCATCCACAC-3’ (reverse primer), 5’-FAM-AGGTGGGCGACCAAGTCTGGCTC-TAMRA-3’ (probe), adipophillin (PLIN2) (GenBank accession number: NM_007408) 5’-GACTCTGTCGGGCATGAC-3’ (forward primer), 5’-GTATTGGCAACCGCAATT-3’ (reverse primer) and the endogenous-control Eukaryotic 18S rRNA (GenBank accession number: X03205) (PE Biosystems).

1. Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: a review. Mediators of inflammation.2010;513948.