Kidney

Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

Pernille B. Hansen, Christian B. Poulsen, Steen Walter, Niels Marcussen, Leanne L. Cribbs, Ole Skøtt, Boye L. Jensen

Abstract—Calcium channel blockers are widely used for treatment of hypertension, because they decrease peripheral vascular resistance through inhibition of voltage-gated calcium channels. Animal studies of renal vasculature have shown expression of several types of calcium channels that are involved in kidney function. It was hypothesized that human renal vascular excitation-contraction coupling involves different subtypes of channels. In human renal artery and disected intrarenal blood vessels from nephrectomies, PCR analysis showed expression of L-type (Ca₂⁺ 1.2), P/Q-type (Ca₂⁺ 2.1), and T-type subtype (Ca₂⁺ 3.1 and Ca₂⁺ 3.2) voltage-gated calcium channels (CaVs), and quantitative PCR showed highest expression of L-type channels in renal arteries and variable expression between patients of subtypes of calcium channels in intrarenal vessels. Immunohistochemical labeling of kidney sections revealed signals for Ca₂⁺ 2.1 and Ca₂⁺ 3.1 associated with smooth muscle cells of preglomerular and postglomerular vessels. In human intrarenal arteries, depolarization with potassium induced a contraction inhibited by the L-type antagonist nifedipine, EC₅₀ 1.2×10⁻⁸ mol/L. The T-type antagonist mibefradil inhibited the potassium-induced constriction with large variations between patients. Interestingly, the P/Q-type antagonist, ω-agatoxin IVA, inhibited significantly the contraction with 24% at 10⁻⁹ mol/L. In conclusion L-, P/Q, and T-type channels are expressed in human renal blood vessels, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. The contribution of P/Q-type channels to contraction in the human vasculature is a novel mechanism for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers might affect vascular reactivity also through P/Q-type channel inhibition. (Hypertension. 2011;58:464-470.) ● Online Data Supplement

Key Words: excitation-contraction coupling ■ renal hemodynamics ■ human ■ kidney ■ vascular biology ■ calcium channel

Calcium antagonists are widely used as pharmacological treatment for arterial hypertension and act primarily through vasodilation in the resistance vessels. Despite the existence of several subtypes of voltage-gated calcium channels (CaVs), the physiological importance of different subtypes of calcium channels for vascular smooth muscle function in humans is unknown.

The family of CaVs is divided into high-voltage activated channels (including L- and P/Q-type CaVs), and low-voltage activated channels, to which the T-type Ca₉ belongs. Genes encoding mRNAs for Ca₉, α₁-subunits have been cloned, and the L-type channels include Ca₉ 1.1 to 1.4, P/Q-type includes Ca₉ 2.1, and T-type channels include 3 different Ca₉, 3.1 to 3.3. In animal studies, vascular smooth muscle cells from renal preglomerular vessels express Ca₉ 1.2, Ca₉ 2.1, Ca₉ 3.1, and Ca₉ 3.2.2-4 The expression of P/Q-type channels in aorta and preglomerular and postglomerular smooth muscle cells was surprising, because this channel is typically associated with neurons and the most abundant calcium channel in the brain5 with 2 splice variants, Ca₉ 2.1a and b.6 Postglomerular vessels from rats showed a regional heterogeneity in the expression pattern of Ca₉s with L- (Ca₉ 1.2) and T-type (Ca₉ 3.1 and 3.2) subunits expressed in efferent arterioles from juxtamедullary glomeruli, and only T-type-channels were observed in mouse cortical efferent arterioles.3,7 In rodents, excitation-contraction coupling in renal resistance vessels involves several types of voltage-gated calcium channels, and the activation mechanisms that induce vasoconstriction in afferent and efferent arterioles in the renal cortex are different. Depolarization and Ca₉ activity are involved in the pathway that leads to vasoconstriction in preglomerular vasculature.8,9 In postglomerular efferent arterioles, calcium influx pathways are not dependent on depolarization10 and are resistant to L-type calcium channel antagonists11 and sensitive to T-type antagonists.7,12 In vivo data confirm the heterogeneity between afferent and efferent arterioles, and an
important contribution from T-type channels has been suggested for efferent arterioles.13–15

Several recent clinical studies have suggested that T-type blockers have additional beneficial effects on renal function and blood pressure compared with traditional L-type blockers.16–18 In a changeover study, bendipine (L- and T-type antagonist) caused a larger reduction in blood pressure and proteinuria compared with L-type treatment using amlodipine.10 The observation of superior renoprotective effects with a combined L- and T-type treatment is in agreement with demonstration of a vasoconstrictor effect of T-type channels on efferent arterioles in animal studies.

Because several types of Ca\textsubscript{v} are involved in changes in preglomerular and postglomerular vessel diameters in rodents, inhibition of 1 or several Ca\textsubscript{v}s will affect regulation of renal blood flow, glomerular ultrafiltration pressure, and medullary blood flow. These effects influence glomerular filtration rate and salt and water homeostasis and thereby blood pressure. Furthermore, the kidney vascular segments are involved in several pathological conditions, such as diabetes mellitus and hypertension. Despite this significant clinical finding that indicates T-type channels in postglomerular vessels in humans, there is no information available regarding the expression patterns and functional significance of Ca\textsubscript{v} subtypes in the human renovascular bed. It is, therefore, relevant to investigate the significance of Ca\textsubscript{v} subtypes in human renal blood vessels.

The purpose of the present study was to elucidate the molecular expression pattern of Ca\textsubscript{v}s and their functional significance in human renal preglomerular arteries. Focus was on L-, P/Q-, and T-type channels. Expression and location of Ca\textsubscript{v} were determined by PCR and immunostaining. The functional importance was investigated by measurement of force development in a myograph setting. Rings were isolated from human intrarenal preglomerular arteries and exposed to a standard depolarizing stimulus with and without Ca\textsubscript{v} blockers. In parallel, experiments were run on murine intrarenal arteries for comparison.

Methods

Animals

The experimental protocol was approved by the Danish Animal Experiments Inspectorate under the Danish Ministry of Justice, and animal care followed the guidelines of the National Institutes of Health for the Care and Use of Laboratory Animals. Male and female mouse (C57BL/6) intrarenal arteries (segmental arteries) were isolated by microdissection under a stereomicroscope for functional studies.

Human Material

The use of human material was approved by the Danish Ethical Committee and in agreement with declaration of Helsinki and Title 45, US Code of Federal Regulations, Part 46, Protection of Human Subjects, Revised November 13, 2001, effective December 13, 2001. Human renal blood vessels were taken from patients who underwent nephrectomy. Only the part of the kidney consisting of normal tissue was used. Human renal and intrarenal arteries (interlobar and arcuate arteries) were isolated by microdissection.

PCR Analysis

RT-PCR and real-time PCR were performed on microdissected mouse intrarenal arteries (segmental arteries) and human renal and intrarenal arteries. For details please see the online Data Supplement at http://hyper.ahajournals.org.

Immunohistochemistry

For Ca\textsubscript{v}2.1 immunohistochemistry, human kidney sections were incubated with primary antibody rabbit anti-Ca\textsubscript{v}2.1 (Alomone ACC-001). For Ca\textsubscript{v}3.1 immunohistochemistry, sections of mouse and human kidneys were incubated overnight using primary rabbit anti-Ca\textsubscript{v}3.1 antibody.19 For details please see the online Data Supplement.

Isometric Force Measurements in Intrarenal Arteries of Humans and Mice

Human and mouse intrarenal arteries were suspended in physiological saline solution in a Halpern-Mulvany wire myograph, and isometric force development was measured. Viability of the vascular smooth muscle and endothelial cells was tested by demonstrating contraction to phenylephrine (10–6 mol/L) and relaxation to acetylcholine (10–6 mol/L), respectively. For details please see the online Data Supplement.

Statistical Analysis

Data are presented as mean±SEM. Significance of changes was calculated by 1-way ANOVA with Bonferroni. For details please see the online Data Supplement.

Results

The study included 21 patients. The primary diagnoses were either tumor or cysts. The median age was 63 years, and median blood pressure was 134/77 mm Hg. For details please see the online Data Supplement.

Expression of Calcium Channels in Human and Mouse Renal Vasculature

To assess the expression profile of Ca\textsubscript{v}s in renal blood vessels from humans, PCR was applied on 9 patients. In human renal arteries, expressions of mRNAs encoding Ca\textsubscript{v}1.2, Ca\textsubscript{v}2.1, Ca\textsubscript{v}3.1, and Ca\textsubscript{v}3.2 were found (Figure 1A, results from 4 patients shown). Furthermore, mRNA from several types of calcium channels was expressed within one patient’s renal artery. In, for example, patient No. 181, Ca\textsubscript{v}1.2, Ca\textsubscript{v}2.1, Ca\textsubscript{v}3.1, and Ca\textsubscript{v}3.2 were observed. When cDNA from human intrarenal arteries was subjected to PCR, amplification products of the expected size were obtained for Ca\textsubscript{v}1.2, Ca\textsubscript{v}2.1, Ca\textsubscript{v}3.1, and Ca\textsubscript{v}3.2, however, with some variation between patients (Figure 1B). As for the renal arteries, intrarenal arteries from the same patient also expressed several types of calcium channels with some variability (Figure 1B). No amplification was observed in negative controls with water instead of cDNA or when reverse transcriptase was omitted in the RT-PCR, thus confirming the mRNA origin of the
amplification products. Positive controls were brain cDNAs, and amplification yielded products of the expected size. Using template from renal segmental arteries from mice (Figure 1C), we observed amplification products of the expected size for CaV1.2, CaV2.1a, CaV3.1, and CaV3.2.

We then examined the relative expression of the different calcium channels compared with CaV1.2 in human renal arteries and intrarenal arteries. In human renal arteries, CaV1.2 was the most abundant in all patients with the expression of CaV3.2>CaV2.1a, CaV3.1, and CaV3.2. In intrarenal vessels, CaV3.2 was largely expressed in all of the patients and was even higher that the expression of CaV3.2 in murine intrarenal arteries (n=4). Positive control was whole kidney and negative controls were kidney-RT, omission of reverse transcriptase, and H2O.

Localization of Calcium Channels in Human Renal Vasculature

Next, the distribution of CaV2.1 and CaV3.1 was examined in human kidney sections. Labeling for CaV3.1 was associated with the entire renal vasculature, including larger arteries (Figure 3A), glomerular arterioles (Figure 3C), and vasa recta (Figure 3D). Smooth muscle cells from all types of blood vessels were stained. Furthermore, mice arteries and arterioles also stained positive for CaV3.1 (Figure 3E), with no labeling in the negative control (Figure 3B and 3F). Also, labeling for CaV2.1 protein was observed in arteries and arterioles of human sections (Figure 4). Interestingly, arteries displayed immunopositive labeling for CaV2.1 in both smooth muscle cells and endothelial cells (Figure 4A and 4B). Cortical glomerular arterioles were also positive for CaV2.1 (Figure 4D). Figure 4E and 4F shows distinct staining of medullary vasa recta. Omission of primary antibody (negative control) yielded no staining (Figure 4C).

Isometric Force Measurements in Intrarenal Arteries of Humans and Mice

The functional involvement of different types of calcium channels was tested in isolated human intrarenal blood vessels after depolarization. For details on vascular variability
Potassium concentration-dependently contracted human blood vessels with an EC75 of 70 mmol/L, and administration of the L-type antagonist nifedipine concentration-dependently inhibited contraction (EC50 of 1.2 mmol/L), with a first significant inhibition (from 100.0% to 5.7% at 7.8 mmol/L) at 100.0% to 5.7% (9.6%)

Next we examined whether the T-type Cav3.1 are involved in depolarization-induced contraction. Mibefradil had a very variable effect on blood vessels from different patients with a significant inhibition of the potassium-induced contraction at 10\(^{-5}\) mmol/L to 40.6±6.0% contraction with an EC50 of 6.8×10\(^{-7}\) mol/L (Figure 5C). In mice, a less variable response was observed, and the first significant inhibition was obtained at a concentration of 10\(^{-8}\) mol/L of nifedipine. In mice, nifedipine also concentration-dependently inhibited the potassium-induced contraction with a significant inhibition at 10\(^{-8}\) mol/L (Figure 5B).

The functional effect of the P/Q-type channels was tested by application of the antagonist \(\delta\)-agatoxin IVA. The antagonist dose-dependently inhibited the contraction with significant inhibition from 100.0% to 75.8±2.9% at 10\(^{-9}\) mmol/L.

Discussion

The present study establishes by combined molecular identification, immunohistochemical localization, and in vitro pharmacological characterization that L-, P/Q-, and T-type calcium channels are expressed, and L- and P/Q-type channels are of functional importance in human renal preglomerular arteries. Also, postglomerular vessels express P/Q- and T-type channels, and particularly P/Q-type channels were associated with the endothelium in postglomerular vasa recta. Similar results have been obtained in vasculature of rodents. The involvement of different types of calcium channels in human renal vascular contractility has been unclear, but the present study shows for the first time that depolarization consistently constricts the blood vessels not only through an L-type channel-dependent activation but also with the involvement of the P/Q type. No significant effect of T-type blockade on contraction was observed.

Immunohistochemical localization and mRNA detection corroborate novel evidence for the coexistence of P/Q-type, L-type, and T-type calcium channels in human renal vasculature.
T-type, and L-type Cav_{3}s in identical vascular segments of the human kidney in agreement with rodent data. The dissection technique allowed us to isolate mRNA from intrarenal arteries, and the expression level of the channels was variable between patients. However, all of the patients expressed several types of calcium channels. The variability could be attributed to individual genetic or (patho)physiological differences, but also the different primary diseases and variable pharmacological regimens could be important. Hypertensive individuals might have increased expression of L-type channels in vascular smooth muscle cells, and increased blood pressure and target organ damage. The variability could be attributed to individual genetic or (patho)physiological differences, but also the different primary diseases and variable pharmacological regimens could be important. Hypertensive individuals might have increased expression of L-type channels in vascular smooth muscle cells, and increased blood pressure and target organ damage.

In agreement with the molecular data, functional data from the present study provide new evidence for the involvement of several types of channels in the excitation-contraction mechanism in human renal vasculature. Depolarization led to contraction that was sensitive to the L-type antagonist nifedipine in all of the tested patients, which confirms the exquisite voltage dependence of preglomerular contraction known from many species. Also, the EC_{50} observed in the present study (EC_{50} of 1.2×10^{-8} mol/L) is in agreement with the reported human EC_{50} for L-type channels (EC_{50} of 1 to 10×10^{-8} mol/L). Surprisingly, also P/Q-type channels contributed to the potassium-induced contraction, because the specific P/Q-type antagonist ω-agatoxin IVA inhibited the contraction by ~24%. ω-Agatoxin IVA is a selective P/Q-type antagonist that blocks P-type channels at concentrations...
Our evidence for T-type channels in human renal blood vessels is in agreement with the notion that T-type blockers have specific and beneficial intrarenal effects compared with L-type blockers.16–18 In a crossover study, benidipine (L- and T-type antagonist) caused a larger reduction in blood pressure and proteinuria compared with L-type treatment using amldipine,19 and benidipine favorsably affects renal function in patients with essential hypertension compared with amlodipine.18 These studies suggest a clinical benefit of benidipine over amlodipine as an antihypertensive drug because of a renoprotective effect. The observation of superior renoprotective effects with a combined L- and T-type treatment is in agreement with the previous demonstration of a differential expression of calcium channels in rodent kidney with a vasoconstrictor effect of T-type channels on efferent arterioles.35 This information is not yet available from the human kidneys for technical reasons. A study on human glomerular arterioles would elucidate this issue to be of great interest, because these vascular resistance vessels determine renal blood flow rate and glomerular filtration rate and affect blood pressure.

Perspectives
In conclusion, L-, P/Q-, and T-type Ca\(_2\)s are present in human renal blood vessels, and L- and P/Q-type channels are of functional importance for the depolarization-induced vasoconstriction. These novel observations are relevant for the understanding of regulation of human renal blood flow and glomerular filtration rate and should be considered when choosing calcium blockers for clinical treatment. The functional importance of P/Q-type channels in the human vasculature could give rise to novel mechanisms for the regulation of renal blood flow and suggests that clinical treatment with calcium blockers might affect vascular reactivity through P/Q-type channel inhibition.

Acknowledgments
We thank Kenneth Andersen, Kristoffer Rosenstand, Lis Teusch, and Susanne Hansen for technical assistance.

Sources of Funding
This work was supported by grants from the Danish Medical Research Council (271-07-0629 and 271-07-0837), Lundbeck Foundation (R13-A1364), the Danish Heart Foundation (07-10-R60-A1686-B819-22429), and the Danish Kidney Association.

Disclosures
None.

References
4. Hansen PB, Jensen BL, Andreassen D, Friis UG, Skott O. Vascular smooth muscle cells express the α(1A) subunit of a P/Q-type voltage-dependent...

Functional Importance of L- and P/Q-Type Voltage-Gated Calcium Channels in Human Renal Vasculature

Pernille B. Hansen, Christian B. Poulsen, Steen Walter, Niels Marcussen, Leanne L. Cribbs, Ole Skøtt and Boye L. Jensen

Hypertension. 2011;58:464-470; originally published online July 25, 2011;
doi: 10.1161/HYPERTENSIONAHA.111.170845

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/58/3/464

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2011/07/22/HYPERTENSIONAHA.111.170845.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

FUNCTIONAL IMPORTANCE OF L- AND P/Q-TYPE VOLTAGE GATED CALCIUM
CHANNELS IN HUMAN RENAL VASCULATURE

Pernille B. Hansen¹, Christian B. Poulsen¹, Steen Walter², Niels Marcussen³, Leanne L. Cribbs⁴,
Ole Skøtt¹, Boye L. Jensen¹,
¹Cardiovascular and Renal Research, University of Southern Denmark, DK-5000 Odense,
Denmark.
²Department of Urology, Odense University Hospital, DK-5000 Odense, Denmark.
³Department of Pathology, University of Southern Denmark, DK-5000 Odense, Denmark.
⁴Cardiovascular Institute, Loyola University Medical Center, Maywood, Il, USA.
Short title: Calcium channels in human renal vasculature

Correspondence

Pernille B. Hansen, Ph. D.
Dept. of Physiology and Pharmacology, University of Southern Denmark
Winsløwparken 21, 3. DK-5000, Odense C, DENMARK
Phone: +45 6550 3717 (direct), Fax:+45 6613 3479
E-mail: pbhansen@health.sdu.dk
Expanded materials and methods

Animals
Male and female mice (C57BL/6) had free access to rodent chow (Altromin, Lage, Germany) and tap water. Mouse intra-renal arteries (segmental arteries) were isolated by microdissection under stereomicroscope for functional studies.

Human Material
Human renal blood vessels were taken from patients, who underwent nephrectomy for renal cancer or cysts. Only the part of the kidney consisting of normal tissue was used. All patients gave their informed written consent to participate in the study. Kidneys were extirpated and immediately transported to the Institute of Pathology. Human renal and intra-renal arteries (interlobar and arcuate arteries) were isolated by microdissection under stereomicroscope within one hour of receipt of the material.

PCR-analysis:
Reverse Transcription PCR and real-time PCR was performed: RNA was isolated from microdissected mouse intra-renal arteries (segmental arteries) and human renal and intra-renal arteries by TRIzol reagent from Invitrogen (Carlsbad, CA, USA) and reverse transcribed using Superscript and oligo (dT). PCR consisted of 35 cycles and each cycle included incubation at 95°C for 20 seconds, 60°C for 20 seconds and 72°C for 20 seconds. Specific primers were used for each receptor subtype.

Real-time PCR: Quantitative three-step real-time PCR was performed on a Mx3000 real time PCR instrument (Stratagene) using 2X IQ SYBR Green Supermix (BIO-RAD) according to the instructions from the manufacturer. All measurements were performed in duplicate. Real-time PCR consisted of 40 cycles and each cycle included incubation at 95°C for 20 seconds, 60°C for 20 seconds and 72°C for 20 seconds. Specific primers were used for each receptor subtype.

Mouse primers: Ca.1.2(Genbank NM009781 sense 5’-TGC CTA CGG ACT TCT CTT CC-3’ and antisense 5’-GCT CCT TTC CCT CCT AGA GC-3’ covering 150bp), Ca.2.1(Genbank NM 007578 sense 5’-GCC CTG ACG GTG TTC AAC-3’ and antisense(Ca.2.1a, P-type channels)5’-CTC AGG TTG ATG AAG TTA TTC C-3’ covering 185bp, antisense(Ca.2.1b, Q-type channels) 5’-CAG GTT GAT GAA GTT ATT CGG-3’ covering 189bp), Ca.3.1(Genbank NM 009783 sense 5’-GAA GTG GCC AAG AGT-3’ and antisense 5’-GCT CGT CTG AGG TG-3’ covering 221bp), Ca.3.2(Genbank NM 021415 sense 5’-GCT CTC CCC CTG CTA ATG CAC-3’ antisense 5’-AGA TAC TTT GCC ACC CAG G-3’ covering 247bp). GAPDH, sense 5’-TGA TGG CAT GGA CTG TGG-3’ antisense 5’-CAG CAA TGC ATC CTG CAC-3’ covering 104bp.

Human primers: Ca.1.2(Genbank NM 199460 sense 5’- GCA ACG GCT GGA ACC TAC TA-3’ and antisense 5’-CA GAA AGC ATG TGG TGG TGG TG-3’ covering 282), Ca.2.1(Genbank NM 001127222 sense 5’-CAA CCA CAC CGT GTG ACA AG-3’ and antisense 5’-AAA GTA GCG CAG GTT CAG GA-3’ covering 202bp), Ca.3.1(Genbank NM 018896 sense 5’-CTT CGA TGG TGT CAT TGT GG-3’ and antisense 5’-TAA GCA GCA TGC AGA AGG TG-3’ covering 227bp), Ca.3.2(Genbank NM 021098 sense 5’- ATC ATG CTC AAC TGC GTG AC-3’ and antisense 5’-TTG TGT CCG TCC AAC GAG TA-3’ covering 248bp). GAPDH, sense 5’- CGA GAT CCC TCC AAA ATC AA-3’ antisense 5’-GTC TTC TGG GTG GCA GTG AT-3’ covering 323bp.
Negative controls included water and RNA where no reverse transcriptase was added to the reaction (-RT). Positive control was whole kidney tissue (mouse) and human brain for the human part of the study (BD – Diagnostic Systems, USA). The efficiency of the all primers used was between 95-100%.

Immunohistochemistry

For Ca\(_{2.1}\) immunohistochemistry, human kidneys were embedded in paraffin and cut in 4 µm slices. Then permeabilized using ethanol in decreasing concentrations (99% ->70%) followed by 3% goat serum and incubation with primary antibody rabbit anti-Ca\(_{2.1}\) diluted 1:50 (Alomone ACC-001) over night. For Ca\(_{3.1}\) immunohistochemistry, paraffin embedded sections of mouse and human kidneys were treated with 0.2% triton X followed by 0.5 % hydrogen peroxide for 5 minutes and 3% bovine serum albumin. Next the sections were incubated overnight using primary rabbit anti-Ca\(_{v}3.1\) antibody 19 diluted 1:500. Secondary antibody goat anti-rabbit IgG, horseradish peroxidase labeled (DAKO) or Alexa 568 conjugated goat anti-rabbit (Molecular Probes) diluted 1:1000 were applied. Horseradish peroxidase labeled sections were stained with diaminobenzidine (DAB\(^+\) substrate-chromogen system, DAKO) and counter stained with hematoxylin.

Isometric force measurements in intra-renal arteries of human and mice

Human intra-renal arteries consisting of interlobar and arcuate arteries and renal arteries were removed under stereomicroscope and stored in the following solution, in mmol/L: NaCl 103, KCl 5.4, NaHCO\(_3\) 4.0, Na\(_2\)HPO\(_4\) 1.5, MgSO\(_4\) 0.8, glucose 5.1, Na-pyruvate 0.9, Na-isethionic acid 30, HEPES 5.6 and in ml/L: MEM vitamin solution 10 (Sigma M6895), MEM essential amino acid solution 20 (Sigma M5550), and MEM nonessential amino acid solution 10 (Sigma M7145) at 4 °C until further use. Mice were killed by cervical dislocation and the kidneys were placed in ice cold physiological salt solution (PSS), in mmol/L: NaCl 115, NaHCO\(_3\) 25, MgSO\(_4\) 1.2, K\(_2\)HPO\(_4\) 2.5, CaCl\(_2\) 1.3, glucose 5.5, and HEPES 10 equilibrated with 5 % CO\(_2\) in air at pH 7.4. Human and mouse intra-renal arteries were suspended in PSS in a Halpern-Mulvany wire myograph (model 610, Danish Myo Technology A/S, Aarhus, Denmark) and isometric force development was measured (PowerLab, ADInstruments, Colorado Springs, CO, USA). Two rings per artery were incubated at 37 °C in PSS. Then, the rings were normalized according the manufactorers protocol and allowed to equilibrate for 30 minutes. Viability of the vascular smooth muscle and endothelial cells was tested by demonstrating contraction to phenylephrine (10\(^{-6}\) mol/L) and relaxation to acetylcholine (10\(^{-6}\) mol/L), respectively. This was repeated by the end of the experiment. Blood vessels developing a contraction larger than 2 mN in response to phenylephrine were included in the study.

Protocols: human arteries. In intra-renal arteries the contraction induced by high potassium solution (HPS) 70 mM (EC\(_{75}\)) was tested in the presence of the alpha-adrenoceptor antagonist phenolamin (PHE) 10\(^{-3}\) mol/L to exclude potential involvement of nerve mediated responses. The effect of the L-type antagonist nifedipine (10\(^{-9}\)-10\(^{-6}\) mol/L, Sigma-Aldrich) on HPS-elicited constriction was tested. Each concentration of nifedipine was applied for 5 minutes in the presence of PHE followed by 5 minute HPS administration; this was repeated for each concentration. Furthermore, concentration-response curves were obtained for the T-type antagonist mibefradil (Sigma-Aldrich) in the concentration range 10\(^{-9}\) to 10\(^{-5}\) mol/L. The involvement of P/Q-type calcium channels was tested by a concentration- response relationship using toxin \(\omega\)-agatoxin IVA (10\(^{-10}\)-10\(^{-8}\) mol/L, Alomine Lab. Jerusalem, Israel).
Protocols: mouse arteries. Concentration-response curves were obtained for nifedipine, mibefradil \(\omega\)-agatoxin IVA as described for human material using 50 mmol/L potassium (EC75) instead of 70 mmol/L.

Statistical Analysis

Data are presented as means ± SEM; n represents the number of experiments with different mice or humans. Myograph data were normalized to consecutive applications of high potassium as several administrations of potassium led to increased potassium induced responses. Significance of changes was calculated by one-way analysis of variance (ANOVA) with Bonferroni reduction for multiple comparisons. P<0.05 was considered significant.
Tables and supporting information

The study included 21 patients (15 males and 6 females). The primary diagnoses were either tumor or cysts (Table S1). The median age was 63 (range 28-81 years) and median blood pressure was 134 /77 mmHg (range 146 ± 4/81 ± 1 mmHg (Table S1). None of the patients were treated with calcium blockers before donation of kidney material.

Table S1. Characteristics of the patient cohort that was examined. BP: Systolic/diastolic blood pressure before surgery. Renal cell carcinomas (RCC)

<table>
<thead>
<tr>
<th>Pt. No.</th>
<th>Gender</th>
<th>Age years</th>
<th>BP mmHg</th>
<th>Pathological diagnosis-WHO criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>153</td>
<td>F</td>
<td>63</td>
<td>133/83</td>
<td>RCC</td>
</tr>
<tr>
<td>154</td>
<td>M</td>
<td>80</td>
<td>185/99</td>
<td>RCC</td>
</tr>
<tr>
<td>155</td>
<td>F</td>
<td>65</td>
<td>155/66</td>
<td>RCC</td>
</tr>
<tr>
<td>156</td>
<td>F</td>
<td>54</td>
<td>160/95</td>
<td>RCC</td>
</tr>
<tr>
<td>157</td>
<td>M</td>
<td>71</td>
<td>147/75</td>
<td>n/a</td>
</tr>
<tr>
<td>158</td>
<td>M</td>
<td>44</td>
<td>120/80</td>
<td>RCC</td>
</tr>
<tr>
<td>159</td>
<td>F</td>
<td>76</td>
<td>168/81</td>
<td>Papillary-RCC</td>
</tr>
<tr>
<td>161</td>
<td>M</td>
<td>52</td>
<td>151/106</td>
<td>RCC</td>
</tr>
<tr>
<td>165</td>
<td>M</td>
<td>45</td>
<td>136/91</td>
<td>Hydronephrose</td>
</tr>
<tr>
<td>166</td>
<td>M</td>
<td>62</td>
<td>152/109</td>
<td>RCC</td>
</tr>
<tr>
<td>168</td>
<td>M</td>
<td>72</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>172</td>
<td>F</td>
<td>41</td>
<td>139/69</td>
<td>Hydronephrose</td>
</tr>
<tr>
<td>173</td>
<td>M</td>
<td>81</td>
<td>174/77</td>
<td>RCC</td>
</tr>
<tr>
<td>174</td>
<td>M</td>
<td>72</td>
<td>134/67</td>
<td>RCC</td>
</tr>
<tr>
<td>181</td>
<td>M</td>
<td>81</td>
<td>171/73</td>
<td>Papillary-RCC</td>
</tr>
<tr>
<td>193</td>
<td>M</td>
<td>28</td>
<td>131/77</td>
<td>RCC</td>
</tr>
<tr>
<td>194</td>
<td>M</td>
<td>69</td>
<td>149/79</td>
<td>RCC</td>
</tr>
<tr>
<td>197</td>
<td>M</td>
<td>69</td>
<td>137/77</td>
<td>RCC</td>
</tr>
<tr>
<td>248</td>
<td>M</td>
<td>82</td>
<td>126/72</td>
<td>RCC</td>
</tr>
<tr>
<td>250</td>
<td>M</td>
<td>62</td>
<td>134/83</td>
<td>RCC</td>
</tr>
<tr>
<td>999</td>
<td>F</td>
<td>58</td>
<td>123/71</td>
<td>RCC</td>
</tr>
</tbody>
</table>
Figures and supporting information

Isometric force measurements in intra-renal arteries of human

The variability in the vascular responses between patients used for the functional studies is shown in figure S1. Phenylephrine (PE) contracted all vessels by at least 2 mN and acetylcholine decreased the contraction by a mean of 27%.

Figure S1

Effect of phenylephrine (10^{-6} mol/L) and acetylcholine (10^{-6} mol/L) on human intra-renal (IR) arteries mounted in a myograph. Data shown are individual patients (mean of two vascular rings) including means for all patients. Numbers refer to patient no.