Dehydroepiandrosterone-Induced Phosphorylation and Translocation of FoxO1 Depend on the Mineralocorticoid Receptor

Carsten Lindschau, Torsten Kirsch, Uwe Klinge, Peter Kolkhof, Imke Peters, Anette Fiebeler

Abstract—In humans, dehydroepiandrosterone (DHEA), with its sulfate, is the most abundant adrenal steroid, whereas the rat adrenals are not capable of synthesizing this steroid. Circulating concentrations of DHEA sulfate lie in the millimolar range and those of DHEA in the subnanomolar range. DHEA exerts protective potential during vascular remodeling, although the underlying mechanisms of this protection are imperfectly defined. We hypothesized that physiological doses of DHEA alter signaling pathways that are of central importance for vascular integrity. We exposed human endothelial cells, vascular smooth muscle cells, and fibroblasts to DHEA (10⁻⁶ to 10⁻¹⁰ mol/L) and observed a dose- and time-dependent increase of extracellular signal-regulated kinases 1 and 2 activation. Similar results were observed in rat vascular smooth muscle cells. In addition, in rat vascular smooth muscle cells, we found altered phosphorylation and cellular translocation of the transcription factor FoxO1. Pharmacological blockade of the mineralocorticoid receptor (MR) with eplerenone or small interfering RNA-mediated MR-silencing prevented DHEA-induced extracellular signal-regulated kinase 1/2 phosphorylation and its effects on FoxO1. Of note, in a cell-based MR transactivation assay, we did not find any agonist effect of DHEA on MR activity. We conclude that DHEA induces early signaling events in vascular cells that might underlie the DHEA-mediated protection against vasculopathies. These effects are dependent on the MR, although the finding that DHEA fails to act as a direct MR agonist suggests that additional signaling proteins are involved. In this regard, DHEA may either interact with coeffectors to modify MR activity or serves as a ligand for a yet unknown receptor that might transactivate the MR. (Hypertension. 2011;58:471-478.)

Key Words: dehydroepiandrosterone • mineralocorticoid receptor • smooth muscle cells • signaling
medium (Lonza, Vervier, Belgium) and stimulated with 0.25 mg/mL of 8-(4-chlorophenylthio)-cAMP sodium salt (pCPT-cAMP, Sigma-Aldrich, Munich, Germany) for 72 hours to obtain a tight monolayer. The Hannover Medical School Ethics Committee approved the study, and written informed consent was obtained. Primary aortic human VSMCs (Promocell, Heidelberg, Germany) were grown in medium as recommended by the suppliers. Human fibroblasts were isolated from fresh skin punch biopsies from healthy volunteers after approval from the local authorities. Cell culture techniques are routinely used in our laboratory and have been described elsewhere. Aortic VSMCs were isolated from Wistar rats, as described previously. We followed all of the requirements of the American Physiological Society, and local authorities approved the studies. We used passages 3 to 8 after phenotyping by staining VSMCs for muscle-specific α-actin (DAKO) and desmin (Boehringer-Mannheim). The following substances were used: DHEA (Sigma), PD98059 (Calbiochem), eplerenone (Pfizer), aldosterone (Climafia), and 12-O-tetradecanoylphorbol-13-acetate (Sigma).

**Transfection of Cells**

Cells were treated with DHEA (10⁻⁷ mol/L). Eplerenone (10⁻⁵ mol/L) was used to specifically block the mineralocorticoid receptor (MR). All of the experiments were performed under 24-hour serum-free conditions. For small interfering RNA (siRNA) experiments, cells were nucleofected with specific siRNA (Dharmacon) directed against MR or nontargeting siRNA following the manufacturer’s protocol (Amaxa). The following sequences were used as designed and provided by Dharmacon: MR-directed siRNAs: CCAAGUCAU-UGCAUUGUAA, CGGAACCAUCUACAACUC, GUGAA-GAGCCCUAUCAUCU, and CUUAGGAGCUCCGAAAGUC; siSTABLE nontargeting siRNA control and siSTABLE cyclophilin B siRNA served as controls. Three days after transfection, cells were stimulated as described.

**Immunocytochemistry**

Confocal microscopy was performed as described previously. Fifty to 80 cells at each treatment point from ≥3 independent experiments were examined by 2 blinded investigators. Quantification was done with ImageJ. The subcellular regions were outlined manually, and mean fluorescence intensities were obtained for the regions delineated with data presented as mean fluorescence intensity in each cell area. Rabbit and mouse antiphospho-ERK1/2 (Cell Signaling; 1:200), FoxO1 (Cell Signaling; 1:200), and pFoxO1 (Cell Signaling; 1:200) antibodies were used in the studies.

**Western Blot**

The following primary antibodies were used: polyclonal ERK1/2 (Cell Signaling; 1:1000), phospho-ERK1/2 (Cell Signaling; 1:1000), FoxO1 (Cell Signaling; 1:50), and pFoxO1 (Cell Signaling; 1:100). Peroxidase-conjugated secondary antibodies were purchased from Dianova (1:10 000). Blots were developed with a chemiluminescent substrate and visualized digitally with a ChemiSmart apparatus (PepLab). Three to 6 different cell stimulation experiments were performed and quantified for each protocol. For quantification, the intensity of the control was defined as 100%, and intensity of other bands was calculated accordingly.

**Cell Compartment Analysis**

Separation of cytoplasmic and nuclear compartments was performed and quantified for each protocol. For quantification, the intensity of the control was defined as 100%, and intensity of other bands was calculated accordingly.

**Cell-Based Transactivation Assays**

The generation of stable steroid hormone receptor cell lines, their cultivation, and respective assay procedure have been described in Fagart et al. Briefly, stable MR, glucocorticoid receptor (GR), androgen receptor (AR), progesterone receptor (PR), and estrogen receptor (ER)-expressing CHO-K1 cell lines were generated. On the day of the experiment, compounds were given in 8 dilutions to the cells, followed by the relevant EC₅₀ concentration of each agonist. After an incubation time of 5 to 6 hours, luciferase activity was determined with a luminescence detecting video camera system. The GraphPad Prism Software (version 3.02, GraphPad Software, Inc, San Diego, CA) was used for curve fitting and calculation of EC₅₀ values. The EC₅₀ values from the luciferase assay were determined in ≥2 independent experiments performed in duplicate and are given as mean ± SEM.

**Statistics**

Statistical significance was calculated by Kruskal-Wallis rank test using PASW Statistics 18 (Chicago, IL). Where human donors were used, cells were from ≥3 different donors. A value of *P*<0.05 was considered statistically significant.

**Results**

**DHEA Induces Phosphorylation of ERK1/2 in Vascular Cells**

To confirm findings of others and to validate our experimental setting, we first studied different human vascular cells for their early response to DHEA by determining phosphorylation of the mitogen-activated protein kinases ERK1/2 at 2 different concentrations. All 3 of the human cell types, namely, endothelial cells (human umbilical vein endothelial cells), VSMCs, and fibroblasts, responded in a concentration- and time-dependent manner to DHEA, demonstrating that all 3 of the cell types show biological responses on stimulation with DHEA (Figure 1). To investigate the principal mechanisms of DHEA-induced signal transduction in more detail, we used rat aortic VSMCs. First, we determined whether DHEA induced comparable effects on activation of ERK1/2 in those cells and observed a time-dependent phosphorylation in rat VSMCs (Figure 2). Thus, in the subsequent experiments, we focused our studies on rat VSMCs and investigated key components of DHEA-induced signaling cascades. In our system, DHEA concentrations as low as 100 pmol/L significantly increased ERK1/2 activation with a peak in phosphorylation at 1 nmol/L of DHEA.

**DHEA Induces Phosphorylation and Cellular Translocation of FoxO1**

The status of ERK phosphorylation is central for the activity of numerous downstream proteins; among them is the transcription factor FoxO1. FoxO1 belongs to the family of forkhead O transcription factors. It plays a role in vascular homeostasis and, thus, represents a relevant factor in the pathophysiology of vasculopathies (reviewed in Reference 15). To evaluate the possible responsiveness of FoxO1 to DHEA, we stimulated aortic VSMCs with 100 nmol/L of DHEA and observed a time-dependent response involving early phosphorylation and cellular translocation (Figure 3A). To confirm DHEA-induced phosphorylation and translocation of FoxO1, we next performed a cell compartment separation with subsequent analysis of protein levels. Similar to the results of the immunocytochemical analysis, we found increased protein phosphorylation of FoxO1 at 15 minutes (Figure 3B). Blocking mitogen-activated protein kinase kinase 1, an upstream kinase of ERK1/2, by PD98059 did not inhibit DHEA-induced effects on FoxO1 in cells, even after exposure for longer time points (Figure 3C).

There have been numerous attempts to find a receptor that binds DHEA and transmits its signal. Studies of DHEA
signaling via classical receptors have focused primarily on androgen and estrogen receptor interactions because of the structural similarities of DHEA and androgenic steroids. There have been no reports on the effects of DHEA on the MR. However, with the elucidation of the multiple roles for MR, in addition to its classic role regarding salt and water balance, we set out to determine effects of DHEA on MR signaling. We silenced the MR with specific siRNA, repeated the stimulation with DHEA, and analyzed phosphorylation of ERK1/2. Successful silencing of the MR was confirmed by immunohistochemistry (Figure S1, please see the online Data Supplement at http://hyper.ahajournals.org). Scrambled non-

Figure 1. Dehydroepiandrosterone (DHEA) induces phosphorylation of extracellular signal-regulated kinase (ERK)1/2 in human vascular cells. Primary culture of (A) human umbilical vein endothelial cells, (B) human aortic vascular smooth muscle cells, and (C) human skin fibroblasts were exposed to 2 different concentrations of DHEA for different lengths of time. Shown are representative micrographs of phospho-ERK-stained cells of 4 independent experiments, together with quantification of immunofluorescence intensity, with * indicating significant (P<0.05) difference to protein phosphorylation in the control.
specific siRNA, aldosterone (1 nmol/L), and 12-O-tetradecanoylphorbol-13-acetate stimulation were used to assess non-specific activations. MR-silencing abrogated DHEA (1 nmol/L)-induced ERK1/2 phosphorylation (Figure 4A; for this experiment we chose 15 minutes of DHEA stimulation to look at a similar time point compared with stimulation by aldosterone). Blocking the MR with the selective antagonist eplerenone (10 μmol/L) had a similar effect on DHEA-induced ERK1/2 phosphorylation (Figure 4B). MR silencing also prevented DHEA (1 nmol/L)-induced phosphorylation of FoxO1 (Figure 4C), whereas scrambled siRNA had no effect (Figure S2).

**DHEA Does Not Directly Stimulate the MR**

Given that the MR appears crucial to DHEA-induced signaling, we determined in recombinant Chinese hamster ovary cells whether there is a direct ligand-receptor interaction. We, therefore, investigated possible direct agonist activities of DHEA in comparison with control steroids in a platform of cell lines stably expressing different steroid hormone receptors. We found no agonist activity of DHEA in these MR, GR, AR, PR, or ER-α transactivation assays and a very weak partial agonist activity in the cell-based ER-β assay. Figure 5 shows the results for MR and ER-β.

**Discussion**

DHEA has been demonstrated to modulate multiple inflammatory disorders, including vasculopathies. Many studies of its mode of action have demonstrated that DHEA may lower cytokine-induced effects, but there have been only a few reports describing direct actions of DHEA on signaling pathways. In our studies, we have observed that DHEA exhibits rapid aldosterone-mimicking effects: DHEA not only induces phosphorylation of mitogen-activated protein kinase and FoxO1, but, most interestingly, the MR is crucial for transmitting these effects of DHEA.

Given that both protective and detrimental effects of DHEA have been published in different experimental settings of vascular injury in vivo and in vitro, we studied DHEA-induced modulation of early signaling in primary culture of endothelial cells, smooth muscle cells, and fibroblasts and thereby assessed phosphorylation of the mitogen-activated protein kinase ERK1/2 as an early marker of biological
response. In contrast to many previously published studies, we observed an early upregulation of ERK1/2 phosphorylation already at subnanomolar and, thus, physiological DHEA levels. This finding suggests that DHEA specifically modulates the complex signaling networks, in which activity of ERK1/2 represents a key issue. For instance, activation of ERK1/2 affects signaling pathways associated with cellular proliferation and, thus, modulates inflammation and vasculopathy (reviewed in Reference 17). In all of the human cells studied, we observed a time- and dose-dependent effect of DHEA. This is in accordance with findings of Liu et al., who previously described induction of ERK1/2 phosphorylation in response to DHEA in endothelial cells. The effect occurred within 15 minutes and was a prerequisite for DHEA-induced endothelial proliferation and formation of capillary tubes. We observed in our study similar direct effects of DHEA in both VSMCs, the major cell type during (re)stenosis of arterial vessels, as well as on fibroblasts. This observation supports the well-described pluripotency of DHEA in different settings. The underlying mechanisms and their consequence remain to be clarified.

To shed more light on DHEA-induced signaling, Chen et al. investigated endothelial cells and observed DHEA-induced phosphorylation of the forkhead transcription factor FoxO1, which depends on ERK1/2. In addition, these authors demonstrated that a DHEA-induced signaling cascade via FoxO1 leads to increased expression of the vasoconstrictor endothelin 1. The same group showed in a previous study that relatively high concentrations (100 nmol/L) of DHEA led to a significant stimulation of endothelial NO synthase and release of NO within 5 minutes from bovine aortic endothelial cells. Therefore, a model was drawn of different DHEA signaling pathways leading either to vasodilation via phosphatidylinositol 3-kinase and endothelial NO synthase or vasoconstriction via mitogen-activated protein kinase kinase/FoxO1-endothelin 1. In VSMCs, Abid et al. found that active FoxO inhibited proliferation, and the authors concluded that FoxOs might be a therapeutic target in vasculopathic states. We identified MR to be crucial for transmitting the signaling response to DHEA (Figure 6). The possibility that DHEA signals via the MR without being a direct MR ligand appears peculiar but is not inconsistent with the published literature. A specific receptor for DHEA has never been identified despite intensive research efforts from several groups (reviewed in Reference 16). Previous studies have identified agonist, as well as antagonist, activities of DHEA on AR and ER. One reason for the observed conflicting results likely lies in the different experimental situations.
settings used. In addition, and as already pointed out by Chen et al., further interactions to other steroid receptors possibly exist (also summarized by Webb et al., among others). Alternatively, DHEA may signal through a receptor/activator complex, thereby affecting cellular function. For instance, regarding the estrogen receptor, 60 different coactivators and 20 corepressors, as well as protein interactions with caveolins, G proteins, mitogen-activated protein kinases, and receptor tyrosine kinases, have been described (reviewed in Reference 26). Cofactors of the MR are also well described, although almost all of them represent general coregulators without specific function toward MR. Hultman et al. showed that the MR strongly interacts with peptides derived from steroid receptor coactivator 1a and peroxisome proliferator-activated receptor-γ coactivator 1α and β. Interestingly, steroid receptor coactivator 1 has been shown to be required for ligand-specific activity of tamoxifen. In contrast, the RNA polymerase II elongation factor eleven-nine lysine-rich leukemia (ELL) has been identified as a selective coactivator of the MR. To what extent the interaction between DHEA and its putative receptors is regulated via such cofactors remains to be analyzed. However, the assumption of a simple ligand-receptor binding interaction appears to be insufficient to account for our findings.

According to our data, the MR is centrally involved in DHEA-induced processes and is thereby integrated into general mechanisms of physiological vascular remodeling in vivo. Ongoing studies are focusing on its particular role in this regard. Several in vivo studies have pointed toward involvement of DHEA during cardiovascular events. In heart failure, for example, Nakamura et al. suggested an inverse relation between the MR ligand aldosterone and DHEA in the heart as one possible mechanism for fatal outcome. They demonstrated decreased DHEA levels in the failing heart associated with increasing aldosterone levels, suggesting a possible link between these 2 steroids. This hypothesis has

Figure 4. Dehydroepiandrosterone (DHEA) depends on the mineralocorticoid receptor (MR) for signaling. A, DHEA induces extracellular signal-regulated kinase (ERK) 1/2 phosphorylation in rat vascular smooth muscle cell (VSMC) and is reversed by MR silencing, with * indicating significant differences to the unstimulated control. B, DHEA-induced ERK1/2 phosphorylation revealed by the MR antagonist eplerenone. C, DHEA (10⁻⁹ mol/L) induces phosphorylation of FoxO1 in the absence or presence of eplerenone (10⁻⁵ mol/L). All of the data were assessed by immunocytochemistry and the degree of intensity analyzed as described; ‘significant difference (P<0.05) in protein levels/phosphorylation over control.

Figure 5. Dehydroepiandrosterone (DHEA) has no direct agonist activity on mineralocorticoid receptor (MR) but on estrogen receptor (ER)-β in cell-based transactivation assays. CHO-K1 cells stably expressing MR or ER-β were incubated for 6 hours with increasing concentrations of DHEA (△) or the respective control agonists (▲). Luciferase activity was determined by a luminescence detecting system and expressed as relative light units (RLU).
been supported by studies of Bonnet et al. The authors reported that DHEA reverses vascular remodeling with decreasing proliferation and increasing smooth muscle cell apoptosis in vivo and in vitro. In preliminary observations, we found a stimulatory effect of DHEA on expression of the MR. The role of the MR and its classic ligand aldosterone in vascular remodeling has been studied extensively. For instance, Bodary et al demonstrated that blockade of aldosterone effects after carotid artery injury improved vascular texture in a mouse model, whereas aldosterone usually aggravates vascular remodeling. Although the impact of DHEA on MR expression and function has to be studied in more detail, a possible modulation of MR expression by DHEA might support some effects of DHEA.

At a first glance, our findings of comparable effects of DHEA and aldosterone during early signaling events in cell culture seem contrary to the opposite role of the 2 hormones in vivo. In fact, aldosterone, as well as angiotensin II and cortisol, induces early signaling in a comparable manner, and all of them have been described to be involved in vascular remodeling. However, the distinct effects of aldosterone and DHEA in more complex conditions clearly show that ERK signaling may be just one player within a complex regulatory system. Thus, current knowledge on DHEA signaling clearly points to a signaling network. In a nutshell, regarding the inability of DHEA to directly activate the MR, it seems feasible that DHEA might rather act as an activator that is necessary to transactivate other receptors and that this transactivation modulates the vasculature in either a protective or detrimental mode. Furthermore, inappropriate redox or salt status of the cellular environment (as described for cortisol) may also determine the direction of the response to DHEA in terms of modulating vascular homeostasis. The present studies in the cardiovascular system thus represent an initial step toward understanding the mechanisms of action of DHEA.

**Perspectives**

We here described a possible model for the DHEA-ERK1/2-FoxO1-MR axis in human and rat VSMCs. Nevertheless, further studies are necessary that might shed more light on the question of how the differing dose and time responses observed here translate into regulation of downstream events in the context of circulating levels of DHEA decreasing with age. Answers to these questions may determine, in the clinical setting, who will profit from DHEA substitution or blockade. In this regard, we need to focus on more individual markers to define the appropriate patient group that may benefit from DHEA modulation.

**Acknowledgments**

MR-detecting antibodies were a kind gift from Celso Gomez-Sanchez. We thank Petra Quass, Michaela Beese, and Kristin Wyss for their excellent technical assistance.

**Sources of Funding**

The German Federal Ministry for Education and Research (BMBF) supported A.F. and U.K. (BN9829).

**Disclosures**

None.

**References**

3. Gordon GB, Bush DE, Weisman HF. Reduction of atherosclerosis by administration of dehydroepiandrosterone: a study in the hypercholester-

szylska M, Rzyillo W, Sadowski Z. Decreased plasma levels of dehy-
droepiandrosterone sulphate (DHEA-S) in normalipidemic and hyperli-


7. Liu D, Si H, Reynolds KA, Zhen W, Jia Z, Dillon JS. Dehydroepiandro-
stereone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-ki-

nase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocri-


11. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and tran-


15. Kuiper GG, Carlsson B, Grandien K, Enmark E, Haggblad J, Nilsson S, Gustafsson JA. Comparison of the ligand binding specificity and trans-


23. Chen H, Lin AS, Li Y, Reiter CE, Ver MR, Quon MJ. Dehydroepiandro-sterone stimulates phosphorylation of FoxO1 in vascular endothelial cells via phosphatidylinositol 3-kinase and protein kinase A-dependent sig-


24. Formoso G, Chen H, Kim JA, Montagnani M, Consoli A, Quon MJ. Dehydroepiandrosterone mimics acute actions of insulin to stimulate production of both nitric oxide and endothelin1 via distinct phosphati-


Dehydroepiandrosterone-Induced Phosphorylation and Translocation of FoxO1 Depend on the Mineralocorticoid Receptor
Carsten Lindschau, Torsten Kirsch, Uwe Klinge, Peter Kolkhof, Imke Peters and Anette Fiebeler

Hypertension. 2011;58:471-478; originally published online July 11, 2011;
doi: 10.1161/HYPERTENSIONAHA.111.171280

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/58/3/471

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2011/07/08/HYPERTENSIONAHA.111.171280.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/
Dehydroepiandrosterone-induced phosphorylation and translocation of FoxO1 depend on the mineralocorticoid receptor

Carsten Lindschau¹*, Torsten Kirsch¹*, Uwe Klinge²,
Peter Kolkhof³, Imke Peters¹, Anette Fiebeler¹

¹Nephrology Section, Department of Medicine, Hannover Medical School, Germany
²Department of Surgery, University Hospital RWTH Aachen, Germany
³Global Drug Discovery, Cardiology Research, BAYER Schering Pharma, Wuppertal, Germany

*CL and TK contributed equally

Short title: DHEA, smooth muscle cells, and signaling

Correspondence:
Anette Fiebeler
Carl-Neuberg-Strasse 1
30625 Hannover, Germany, Tel: +49 511 5326319, Fax: +49 511 552366
Email: Fiebeler.a@mh-hannover.de
**Figure S1.** siRNA-mediated knockdown of mineralocorticoid receptor (MR) protein expression in vascular smooth muscle cells (right panel). Non-targeting siRNA served as control (left panel).

**Figure S2.** Knockdown of the MR by siRNA successfully prevented DHEA-induced phosphorylation of ERK1/2 in rat VSMC. Shown are representative micrographs of pERK1/2 stainings three days after nucleofection of the cells with MR-specific siRNA. Non-targeting siRNA served as control.
MR-Expression in rat VSMC

Non-targeting siRNA

MR-targeting siRNA
Suppl. Figure 2

Effects of MR silencing on DHEA-induced ERK 1/2 phosphorylation

Ctr control RNA (non-targeting) + DHEA siMR + DHEA