Thrombospondin 1
A Protective “Matri-cellular” Signal in the Stressed Heart

Davy Vanhoutte, Stephane Heymans

The opinions expressed in this editorial are not necessarily those of the editors or of the American Heart Association.

From the Department of Cardiovascular Diseases (D.V., S.H.), KU Leuven, Leuven, Belgium; Molecular Cardiovascular Biology (D.V.), Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Center for Heart Failure Research (S.H.), Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.

Correspondence to Davy Vanhoutte, Cincinnati Children’s Hospital Medical Center, Molecular Cardiovascular Biology, 240 Albert Sabin Way, MLC 7020, Cincinnati, OH 45229-3039. E-mail Davy.Vanhoutte@cchmc.org

See related article, pp 902–911

© 2011 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org
DOI: 10.1161/HYPERTENSIONAHA.111.176933

© 2011 American Heart Association, Inc. Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.111.176933
administer such an “agent”? In fact, therapeutic use of TSP-1 could potentially play dual roles in the injured heart, one that is initially beneficial, by delimiting hypertrophic growth and providing the necessary strength in the early stages after hemodynamic overload, and a second role that is maladaptive, by mediating progressive myocardial fibrosis that could lead to increased myocardial stiffness, contractile dysfunction, and increased cardiac arrhythmias. In addition, we cautiously need to keep the many other functions of TSP-1 in mind, which could result in undesirable effects on both the cardiovascular system and other organs. An elegant approach to bypass this potential problem would be to obtain a more detailed and defined structure-function analysis of TSP-1. Mapping the specific biological functions of TSP-1 to a defined structural region will probably allow us to fine-tune novel therapies based on TSP-1 peptide fragments or analogues that either mimic a specific TSP-1–mediated function or act as a dominant negative in the stressed heart, while limiting undesirable adverse effects. Nevertheless, because of the critical involvement of TSP-1 in the regulation of fundamental pathways during cardiac injury, repair, and fibrosis, further in-depth analysis of its endogenous roles will undoubtedly provide novel insights into the mechanistic basis of various cardiac diseases.

Sources of Funding

D.V. is supported by a postdoctoral fellowship from the Research Foundation Flanders (FWO-Vlaanderen). The laboratory of S.H. is funded by grants from The Netherlands Heart Foundation (2007B036 and 2008B011) and a VIDI grant of The Netherlands Organization of Scientific Research (NWO).

Disclosures

None.

References

Thrombospondin 1: A Protective "Matri-cellular" Signal in the Stressed Heart
Davy Vanhoutte and Stephane Heymans

Hypertension. 2011;58:770-771; originally published online September 26, 2011; doi: 10.1161/HYPERTENSIONAHA.111.176933
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2011 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/58/5/770

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in *Hypertension* can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to *Hypertension* is online at:
http://hyper.ahajournals.org//subscriptions/