Midgestation Maternal Serum 25-Hydroxyvitamin D Level and Soluble Fms-Like Tyrosine Kinase 1/Placental Growth Factor Ratio as Predictors of Severe Preeclampsia

Abstract—Recent studies have shown that low serum 25-hydroxyvitamin D (25[OH]D) level is a risk factor for preeclampsia. The clinical significance of in vitro findings that vitamin D regulates vascular endothelial growth factor production is unclear. We sought to determine whether there is an association between midgestation serum 25(OH)D levels and angiogenic factor activity and to compare their predictive value for the development of severe preeclampsia. We conducted a nested case-control study of women with severe preeclampsia (n=41) versus women with uncomplicated term birth (n=123) who had second trimester genetic screening (15–20 weeks). Using banked frozen serum, we measured levels of 25(OH)D, vascular endothelial growth factor, soluble fms-like tyrosine kinase 1, and placental growth factor and compared their correlations and predictive values. We found no correlation between serum 25(OH)D and angiogenic factors levels. 25(OH)D alone was comparable to vascular endothelial growth factor and soluble fms-like tyrosine kinase 1/placental growth factor ratio as a predictive marker for severe preeclampsia. A composite of both 25(OH)D level and soluble fms-like tyrosine kinase 1/placental growth factor ratio was more predictive than either alone (area under curve: 0.83 versus 0.74 and 0.67, respectively). In conclusion, combining midpregnancy 25(OH)D level with soluble fms-like tyrosine kinase 1/placental growth factor ratio provides a better prediction for the development of severe preeclampsia. (Hypertension. 2011;58:1120-1125.)

Key Words: 25-hydroxyvitamin D ■ angiogenic factors ■ preeclampsia ■ sFLT-1/PlGF ratio ■ VEGF

Preeclampsia occurs in 2% to 5% of pregnancies and is a major cause of perinatal and maternal morbidity and mortality.1,2 Furthermore, women with preeclampsia are at increased risk for long-term cardiovascular complications, such as chronic hypertension, later in life.3 Early identification of women at risk is essential for the development of preventive measures.

Although several theories regarding the pathogenesis of preeclampsia have emerged,4,5 few early predictors have been identified. For example, low plasma vascular endothelial growth factor (VEGF) in the first trimester of pregnancy is a predictive marker for preeclampsia.6,7 Increased mRNA concentrations of VEGF receptor 1, also known as soluble fms-like tyrosine kinase 1 (sFLT-1), and decreased concentrations of placental growth factor (PIGF) are present in women diagnosed with preeclampsia.6–8 In addition, sFLT-1/PIGF ratio is increased in women who subsequently develop preeclampsia.9 These angiogenic factors may play an important role in the pathogenesis of atherosclerosis and have a wide range of activity depending on genotype and phenotypic factors.10

We reported recently that low midgestation serum 25-hydroxyvitamin D (25[OH]D) is a risk factor for severe preeclampsia.11 Its active form, 1,25-dihydroxyvitamin D(3) (1,25[OH][2]D[3]), stimulates VEGF expression in smooth muscle cells through a vitamin D response element in the VEGF promoter.12 We hypothesized that low serum 25(OH)D may be associated with diminished VEGF production, leading to preeclampsia.

Our study had 2 objectives, to determine whether there is an association between early second trimester maternal serum 25(OH)D level and angiogenic factor activity and to compare the predictive value of serum 25(OH)D level alone versus in combination with angiogenic factor levels, for the later development of severe preeclampsia.
Methods

Study Design
We conducted a nested, case-control study in a cohort of 3992 women (Figure 1). All of the women who had previously given blood for routine genetic multiple marker screening and subsequently delivered at the University of North Carolina-Chapel Hill between January 2004 and November 2008 were eligible. All pregnant women, regardless of risk status or payer status, were offered this screening as part of routine prenatal care. Nonfasting blood samples were collected for routine genetic multiple marker screening between 15 and 20 weeks gestation, and serum aliquots were barcoded and frozen at −70°C. Maternal demographic and medical data were chart abstracted. This study was approved by the University of North Carolina at Chapel Hill Institutional Review Board before data collection, and permission was obtained to use banked serum from these women for research purposes.

Severe preeclampsia was defined as a systolic blood pressure of ≥160 mm Hg and/or a diastolic blood pressure of ≥110 mm Hg, recorded on ≥2 occasions 6 hours apart, plus proteinuria (≥300 mg in a 24-hour collection or 1+ on a urine dipstick) or a systolic blood pressure of ≥140 mm Hg and/or a diastolic blood pressure of ≥90 mm Hg, recorded on ≥2 occasions 6 hours apart plus 5 g of proteinuria in a 24-hour period. We further classified cases of preeclampsia as severe in the setting of pulmonary edema, seizures, oliguria (<500 mL/24 hours), elevated liver enzymes accompanied by right upper quadrant pain, thrombocytopenia (<100 000/mm³), or persistent cerebral symptoms, such as headache or blurry vision. Healthy women with term deliveries (≥37 weeks) were used as controls. We excluded from both cases and controls women with multiple gestation, major congenital fetal anomalies, pregestational hypertension, kidney disease, diabetes mellitus, known thrombophilias, or any other significant preexisting chronic medical disease. All of the patient records were reviewed by a single reviewer (A.M.B.); patients meeting the strict definitions described above were included in the study.

From the overall cohort of 3992 women, we identified 51 cases who met all of the inclusion and exclusion criteria. Ten did not have an adequate volume of serum available for analysis and, thus, were excluded. The remaining cases were matched by race/ethnicity, in a 3:1 ratio, to a random, computer-generated control group of 123 healthy women delivering at term.

Laboratory Analyses
Serum aliquots for each enrolled subject were shipped on dry ice to Massachusetts General Hospital (Boston, MA) for serum 25(OH)D measurement by liquid chromatography-tandem mass spectrometry. The method used is an isotope dilution, liquid chromatography-tandem mass spectrometry assay optimized in the Massachusetts General Hospital laboratory based on published procedures. The limit of detection is 5.0 nmol for vitamin D2 and 7.5 nmol for vitamin D3. The between-run coefficient of variation for quality control serum containing a total vitamin D concentration of 57 nmol is 7.5%.

A second aliquot was transported to the University of North Carolina Department of Biochemistry and Biophysics for angiogenic factor analysis. VEGF, sFLT-1, and PlGF levels were assessed using ELISA, (R&D Systems, Minneapolis, MN) on undiluted single serum samples. Optical density was read on a VersaMax spectrophotometric plate reader at 450 nm, with a correction at 570 nm. For sFLT-1 and PlGF assays, all of the samples were within the detectable limits of the assay, 4 to 3600 pg/mL and 7 to 800 pg/mL, respectively. The detectable limits for VEGF were 0.02 to 1200.00 pg/mL. Fourteen samples, 6 controls and 8 cases, fell below the minimum detection limit of VEGF. The interassay coefficients of variation of sFLT-1, PlGF, and VEGF are 8%, 4%, and 5%, respectively, consistent with other reported coefficients of variation for the assays.

Statistical Analysis
Maternal demographic and medical characteristics were compared between cases and controls using Fisher exact test for categorical variables and Wilcoxon-Mann-Whitney test for continuous variables. Spearman correlations were calculated to determine whether VEGF, sFLT-1, PlGF, or sFLT-1/PlGF ratio were individually related to 25(OH)D. Logistic regression was used to calculate unadjusted estimated odds ratios of each predictor separately. To examine the best combination of analytes that predicted severe preeclampsia, logistic regression with backward selection was used, adjusting for age, body mass index (BMI), parity, season of blood draw, and gestational age at blood draw. For the backward selection procedure, the level of significance used was 0.05; that is, if a predictor had a value >0.05, it was removed from the model. Receiver operator characteristic curves and their corresponding areas under the curve were generated to graphically compare the predictive abilities of logistic models. A 2-sided P<0.05 was considered statistically significant. All of the data analyses were carried out in SAS (version 9.2, SAS Institute, Cary, NC) and R (version 2.10.1, R Foundation for Statistical Computing, Vienna, Austria).

Results
We successfully measured 25(OH)D, VEGF, and PlGF levels from the 164 samples. To eliminate the influence of very extreme observations, 2 outlying values of VEGF >60 pg/mL (66 and 104 pg/mL) were excluded from
Table 1. Clinical and Demographic Characteristics of Women Who Developed Severe Preeclampsia (Cases) and Race/Ethnicity-Matched Women Who Did Not (Controls)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Severe Preeclampsia (n = 41)</th>
<th>Controls (n = 123)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y*</td>
<td>29 (25–34)</td>
<td>29 (25–33)</td>
<td>0.79</td>
</tr>
<tr>
<td>Race/ethnicity, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>12 (29)</td>
<td>36 (29)</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>16 (39)</td>
<td>48 (39)</td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>11 (27)</td>
<td>33 (27)</td>
<td></td>
</tr>
<tr>
<td>Asian</td>
<td>2 (5)</td>
<td>6 (5)</td>
<td></td>
</tr>
<tr>
<td>Multiparous, n (%)</td>
<td>18 (44)</td>
<td>62 (50)</td>
<td>0.59</td>
</tr>
<tr>
<td>Body mass index*</td>
<td>30 (28–34)</td>
<td>30 (27–36)</td>
<td>0.89</td>
</tr>
<tr>
<td>Gestational age at serum collection, wk*</td>
<td>17.1 (16.1–18.9)</td>
<td>17.4 (16.4–18.3)</td>
<td>0.98</td>
</tr>
<tr>
<td>SBP at time of serum collection</td>
<td>119 (109–128)</td>
<td>124 (111–129)</td>
<td>0.49</td>
</tr>
<tr>
<td>DBP at time of serum collection</td>
<td>72 (65–80)</td>
<td>70 (61–81)</td>
<td>0.33</td>
</tr>
<tr>
<td>Gestational age at delivery, wk*</td>
<td>32.6 (30.4–34.7)</td>
<td>39.6 (39–40.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Season of blood draw, % (n)</td>
<td></td>
<td></td>
<td>0.42</td>
</tr>
<tr>
<td>Winter</td>
<td>12 (29)</td>
<td>25 (20)</td>
<td></td>
</tr>
<tr>
<td>Spring</td>
<td>11 (27)</td>
<td>49 (40)</td>
<td></td>
</tr>
<tr>
<td>Summer</td>
<td>10 (24)</td>
<td>29 (24)</td>
<td></td>
</tr>
<tr>
<td>Fall</td>
<td>8 (20)</td>
<td>20 (16)</td>
<td></td>
</tr>
<tr>
<td>25(OH)D, nmol/L*</td>
<td>75 (53–107)</td>
<td>107 (90–121)</td>
<td><0.0001</td>
</tr>
<tr>
<td>VEGF, pg/mL*</td>
<td>1.9 (0.4–3.2)</td>
<td>3.2 (1.7–4.6)</td>
<td>0.0007</td>
</tr>
<tr>
<td>sFLT-1, pg/mL*†</td>
<td>1158 (763–1837)</td>
<td>1129 (819–1413)</td>
<td>0.46</td>
</tr>
<tr>
<td>PlGF, pg/mL*</td>
<td>84 (54–130)</td>
<td>99 (73–158)</td>
<td>0.03</td>
</tr>
<tr>
<td>sFLT-1/PlGF ratio†</td>
<td>15.3 (8.4–27.3)</td>
<td>10.3 (6.4–15.9)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

SBP indicates systolic blood pressure; DBP, diastolic blood pressure; 25(OH)D, 25-hydroxyvitamin D; VEGF, vascular endothelial growth factor; sFLT-1, soluble fms-like tyrosine kinase-1; PlGF, placental growth factor. Wilcoxon-Mann-Whitney test was used for continuous variables and Fisher exact test for categorical variables.

Table 2. Spearman Correlations of 25(OH)D With Angiogenic Factors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Correlation With 25(OH)D</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGF</td>
<td>0.033</td>
<td>0.68</td>
</tr>
<tr>
<td>sFLT-1</td>
<td>0.138</td>
<td>0.09</td>
</tr>
<tr>
<td>PlGF</td>
<td>-0.085</td>
<td>0.28</td>
</tr>
<tr>
<td>sFLT-1/PlGF ratio</td>
<td>0.134</td>
<td>0.10</td>
</tr>
</tbody>
</table>

25(OH)D indicates 25-hydroxyvitamin D; VEGF, vascular endothelial growth factor; sFLT-1, soluble fms-like tyrosine kinase-1; PlGF, placental growth factor.

Women with severe preeclampsia had higher sFLT-1/PlGF ratio than controls.

None of the angiogenic factors (VEGF, sFLT-1, PlGF, or sFLT-1/PlGF ratio) were significantly correlated with 25(OH)D levels using the Spearman rank-based method (Table 2). The unadjusted associations between each analyte and risk of severe preeclampsia were examined using logistic regression and are presented as odds ratio estimates in Table 3. Individually, both 25(OH)D level and sFLT-1/PlGF ratio were significant predictors of severe preeclampsia (P<0.001 and P<0.003, respectively).

During the model selection process, the ratio of sFLT-1/PlGF was determined to have more predictive value than either variable alone, thus it was used in the selection procedure. Leaving the confounders of age, BMI, parity, season of blood draw, and gestational age at birth resulted in a 5% reduction in odds of developing severe preeclampsia, adjusted for age, BMI, parity, season, gestational age at delivery among women with severe preeclampsia (32.6 versus 39.6 weeks; P<0.001).

The odds ratio estimate of 0.95 for 25(OH)D means that each nanomole per liter increase in 25(OH)D level in the blood resulted in a 5% reduction in odds of developing severe preeclampsia, adjusted for age, BMI, parity, season, gestational age at delivery among women with severe preeclampsia (32.6 versus 39.6 weeks; P<0.001).

As presented in Table 1, women with severe preeclampsia had significantly lower early pregnancy levels of 25(OH)D, VEGF, and PlGF compared with controls. sFLT-1 levels were not significantly different between cases and controls.

Table 3. Unadjusted Logistic Regression Model of Each Analyte as a Predictor of Severe Preeclampsia

<table>
<thead>
<tr>
<th>Analyte</th>
<th>Odds Ratio</th>
<th>95% CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>25(OH)D, nmol/L</td>
<td>0.97</td>
<td>0.96–0.98</td>
<td><0.0001</td>
</tr>
<tr>
<td>sFLT-1/PlGF ratio</td>
<td>1.06</td>
<td>1.02–1.11</td>
<td>0.003</td>
</tr>
<tr>
<td>VEGF, pg/mL</td>
<td>0.86</td>
<td>0.73–1.02</td>
<td>0.08</td>
</tr>
</tbody>
</table>

25(OH)D indicates 25-hydroxyvitamin D; VEGF, vascular endothelial growth factor; sFLT-1, soluble fms-like tyrosine kinase-1; PlGF, placental growth factor.
Effect	Odds Ratio	95% CI	\(P \)
25(OH)D, \(\text{nmol/L} \) | 0.95 | 0.94–0.97 | <0.0001 |
sFLT-1/PlGF ratio | 1.11 | 1.05–1.18 | 0.0003 |
Age, y | 1.02 | 0.94–1.11 | 0.62 |
BMI, kg/m\(^2\) | 0.96 | 0.90–1.03 | 0.23 |
Parity* | 0.56 | 0.22–1.38 | 0.20 |
Gestational age at blood draw, wk | 1.01 | 0.76–1.34 | 0.93 |
Spring* | 0.73 | 0.20–2.67 | 0.63 |
Summer* | 1.30 | 0.35–4.92 | 0.70 |
Fall* | 2.32 | 0.55–9.86 | 0.26 |

25(OH)D indicates 25-hydroxyvitamin D; sFLT-1, soluble fms-like tyrosine kinase-1; PlGF, placental growth factor. BMI, body mass index.

*The reference groups for parity and season of blood draw are primigravida and winter, respectively.
VEGF in our study may be explained by the inherent differences between in vitro and in vivo studies, as well as animal versus human physiology.

Our study has several strengths. Maternal serum was collected in midpregnancy, before the presence of clinical manifestations of preeclampsia, reducing the likelihood that the disease process affected 25(OH)D and angiogenic factor levels. We excluded women with chronic medical illnesses, such as diabetes mellitus and chronic hypertension; these diseases have been associated with increased risk for pre-eclampsia and may cause preexisting alterations in 25(OH)D and angiogenic factor activity. In addition, blood pressure at the time of serum blood draw was comparable between cases and controls.

Our findings must be interpreted in the context of the study design. The sample size, although comparable to others in the literature, is relatively small (n=41 cases). This limits our ability to detect smaller but clinically significant differences in analyte levels between the 2 groups. When using a case-control design, there is potential for selection bias, particularly in the selection of controls. However, our controls were nested within a large cohort of women who all provided serum samples as part of routine prenatal screening, reducing selection bias. The duration of storage of the samples ranged from 2 to 6 years. Evidence shows that long-term storage does not affect serum 25-OHD, PlGF, and angiogenic factor activity. Twenty-five percent of cases occurred in multiparous women. The underlying pathophysiology of severe pre-eclampsia may differ in primiparous versus multiparous women, and these differences may reduce our power to detect underlying mechanisms. It is also possible that unmeasured confounding explains the apparent association between 25(OH)D deficiency, altered angiogenic factors, and severe preeclampsia. However, we found that adjustment for some known potential confounders strengthened the observed associations.

Perspectives
In summary, contrary to our hypothesis, we found no correlation between 25(OH)D and angiogenic factors in pregnant women. However, the combination of 25(OH)D level and sFlt-1/PlGF ratio is a better predictor of preeclampsia in midgestation than either marker alone. Our data suggest that 25(OH)D and angiogenic factors play independent roles in preeclampsia pathogenesis. Preeclampsia is a significant public health concern, and interventions aimed at reducing rates of preeclampsia are needed. Translational research identifying potentially modifiable risk factors, such as those identified in the present study, are essential to the success of targeting therapy. This study suggests the need for a randomized control trial of vitamin D supplementation to reduce the risk of severe preeclampsia.

Sources of Funding
This study was supported by the North Carolina Translational and Clinical Sciences Institution grant (2KR70904). C.A.C. was supported, in part, by the Massachusetts General Hospital Center for D-receptor Activation Research. Finally, this work was supported in part by National Institute of Environmental Health Sciences grant T32ES007018.

Disclosures
None.

References
15. Singh RJ, Taylor RL, Reddy GS, Grebe SKG. C-3 epimers can account for a significant proportion of total circulating 25-hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status. J Clin Endocrinol Metab. 2006;91:3055–3061.

Midgestation Maternal Serum 25-Hydroxyvitamin D Level and Soluble Fms-Like Tyrosine Kinase 1/Placental Growth Factor Ratio as Predictors of Severe Preeclampsia

Hypertension. 2011;58:1120-1125; originally published online October 10, 2011; doi: 10.1161/HYPERTENSIONAHA.111.179069

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/58/6/1120

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/