Tetrahydrobiopterin and Endothelial Nitric Oxide Synthase Uncoupling

To the Editor:

Gao et al reported that oral administration of folate, the tetrahydrobiopterin (H4B) precursor, attenuated endothelial NO synthase (eNOS) uncoupling in abdominal aortic aneurysm. The beneficial effects of H4B supplementation in endothelial dysfunction are beyond dispute, but in vivo demonstration of eNOS (un)coupling by H4B is very difficult. The versatile cofactor H4B plays a crucial role in eNOS functionality. Uncoupled eNOS is assumed to produce superoxide (O2•−) in addition to or instead of NO (NO). Reaction of NO produced by eNOS with O2•− produced by eNOS and more abundantly by other enzymes, such as NADPH and xanthine oxidases, decreases NO bioavailability.

At the very low H4B concentration of 100 nmol/L, recombinant human eNOS activity is fully developed, and NO bioavailability is not further increased by H4B (Figure). Also, 10-fold H4B concentration increase (1–10 µmol/L) did not decrease O2•− levels in isolated eNOS incubation mixtures. Thus, almost equimolar H4B amounts keep eNOS coupled. The aortic O2•− levels measured by Gao et al are unlikely to be exclusively produced by eNOS. The effects seen in that study are likely to be because of direct O2•− scavenging by the oxidation of the highly sensitive folate-derived H4B (Figure) rather than by coupling eNOS. That angiotensin II receptor blockade reduces blood pressure and oxidative stress without changing NO biosynthesis/bioavailability argues against eNOS uncoupling in activated renin-angiotensin system.

Figure. A, [15N]nitrite (a measure of NO bioavailability) and (B) [15N]nitrite + [15N]nitrate (a measure of NOS activity) in incubation mixtures (NADPH, 800 µmol/L; FAD [flavin adenine dinucleotide], 5 µmol/L; FMN [flavin mononucleotide], 5 µmol/L; calmodulin, 500 nmol/L; CaCl2, 500 µmol/L) of a recombinant human eNOS (385 nmol/L) formed from L-[15N2]-arginine (20 µmol/L) in phosphate buffer (50 mmol/L; pH 7.4). Incubations were performed at 37°C as described. C, H4B-dependent oxidation of glutathione (3 mmol/L) to glutathione disulfide (GSSG) in phosphate buffer.

Sources of Funding

This study was supported by the Deutsche Forschungsgemeinschaft (grant TS60/4-1).

Disclosures

None.

Dimitrios Tsikas
Anke Böhmer
Markus Flentje
Institute of Clinical Pharmacology
Hannover Medical School
Hannover, Germany

References

Tetrahydrobiopterin and Endothelial Nitric Oxide Synthase Uncoupling
Dimitrios Tsikas, Anke Böhmer and Markus Flentje

Hypertension. 2012;59:e12; originally published online January 3, 2012;
doi: 10.1161/HYPERTENSIONAHA.111.188359

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/59/2/e12

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/