Agonist-Independent Constitutive Activity of Angiotensin II Receptor Promotes Cardiac Remodeling in Mice

See Editorial Commentary, pp 542–544

Abstract—The angiotensin II (Ang II) type 1 (AT₁) receptor mainly mediates the physiological and pathological actions of Ang II, but recent studies have suggested that AT₁ receptor inherently shows spontaneous constitutive activity even in the absence of Ang II in culture cells. To elucidate the role of Ang II–independent AT₁ receptor activation in the pathogenesis of cardiac remodeling, we generated transgenic mice overexpressing AT₁ receptor under the control of α-myosin heavy chain promoter in angiotensinogen-knockout background (AT₁Tg-AgtKO mice). In AT₁Tg-AgtKO hearts, redistributions of the Gq₆₁₁ subunit into cytosol and phosphorylation of extracellular signal-regulated kinases were significantly increased, compared with angiotensinogen-knockout mice hearts, suggesting that the AT₁ receptor is constitutively activated independent of Ang II. As a consequence, AT₁Tg-AgtKO mice showed spontaneous systolic dysfunction and chamber dilatation, accompanied by severe interstitial fibrosis. Progression of cardiac remodeling in AT₁Tg-AgtKO mice was prevented by treatment with candesartan, an inverse agonist for the AT₁ receptor, but not by its derivative candesartan-7H, deficient of inverse agonism attributed to a lack of the carboxyl group at the benzimidazole ring. Our results demonstrate that constitutive activity of the AT₁ receptor under basal conditions contributes to the cardiac remodeling even in the absence of Ang II, when the AT₁ receptor is upregulated in the heart. (Hypertension. 2012;59:627-633.) ● Online Data Supplement

Key Words: ARB ■ cardiac dysfunction ■ fibrosis ■ G protein-coupled receptor ■ inverse agonist

The angiotensin II (Ang II) type 1 (AT₁) receptor is a 7 transmembrane spanning G protein-coupled receptor (GPCR), and the activation of AT₁ receptor is involved in regulating pathophysiological processes of the cardiovascular system. In principle, the AT₁ receptor is activated on binding to Ang II, which is produced systemically or locally after sequential proteolytic processing. However, recent studies demonstrated that the AT₁ receptor inherently shows spontaneous constitutive activity even in the absence of Ang II in cultured cells.¹⁻³ GPCRs are structurally unstable and show significant levels of spontaneous activity in an agonist-independent manner.⁴ In addition, we and others demonstrated that the AT₁ receptor can be activated by mechanical stress independent of Ang II⁵⁻⁷ through conformational switch of the receptor.¹ These observations have highlighted the inverse agonist activity of AT₁ receptor blockers (ARBs) as a drug-specific property that can inhibit Ang II–independent constitutive activity and mechanical stress-induced receptor activation.¹⁻²⁻⁵⁻⁸ In a mouse model, mechanical stress-induced AT₁ receptor activation led to the development of cardiac hypertrophy independent of Ang II, and treatment with inverse agonists for the AT₁ receptor-attenuated cardiac hypertrophy thus formed.⁵ However, the pathogenic role of Ang II–independent constitutive activity of the AT₁ receptor and clinical relevance of inverse agonist activity of ARBs against constitutive receptor activation remains to be elucidated in vivo. In several GPCRs, gain-of-function mutations are causative of diseases, but any activating mutations in the
coding region of the AT1 receptor gene have not been identified in hypertension or primary hyperaldosteronism.9,10 Although knock-in mice with a constitutively activating mutation (substitution of Asn111 to Ser with a C-terminal deletion) showed low-renin hypertension and progressive fibrosis in kidney and heart,11 it remains unclear whether constitutive activity of the native AT1 receptor leads to some phenotypic abnormalities even under circumstances where the production of Ang II is genetically inhibited.

Therefore, we generated transgenic mice overexpressing AT1 receptor under the control of α-myosin heavy chain promoter in the angiotensinogen (AGt)–knockout background. Here, we show that constitutive activity of the AT1 receptor indeed contributes to cardiac remodeling independent of Ang II even in vivo, when the AT1 receptor is upregulated in the heart.

Methods

An expanded Methods section is available in the online-only Data Supplement.

Mice, Transverse Aortic Constriction Operation, and Transthoracic Echocardiography

Mice expressing the human AGTRI gene under the control of α-myosin heavy chain promoter (on the C57BL/6j background) and mice deficient for the AGT gene (on the Institute of Cancer Research [ICR] background) were described previously.12,13 Candesartan cilexetil and candesartan-7H were synthesized by Takeda Pharmaceutical Co, Ltd, and administered via drinking water. Sham or transverse aortic constriction operation was performed as described previously,12 and transthoracic echocardiography was performed on conscious mice with a Vevo 770 Imaging System. All of the protocols were approved by the institutional animal care and use committee of Chiba University.

Ang II Infusion and BP Measurement

Eight-week–old C57BL/6j male mice were treated with Ang II (0.6 mg/kg per day) or vehicle for 2 weeks using an osmotic mini-pump (ALZET model 2002; Durent Corp). The BP and pulse rates were measured noninvasively by a programmable sphygmomanometer (ALZET model 2002; Durent Corp). The BP and pulse rates were measured noninvasively by a programmable sphygmomanometer (BP-98A, Sofron) using the tail-cuff method.

Real-Time RT-PCR Analysis

Total RNA was extracted by using the RNeasy kit (Qiagen), and single-stranded cDNA was transcribed by using QuantiTect Reverse Transcription kit (Qiagen), according to the manufacturer’s protocol. We conducted quantitative real-time PCR analysis with the Universal ProbeLibrary Assays (Roche Applied Science), according to the manufacturer’s instructions.

Western Blot Analysis and Histological Analysis

Western blot analysis and histological analysis were performed as described previously.13,14

Radioligand Receptor Binding Assay

Radioligand binding assays were performed as described previously.12

Statistics

All of the data are presented as mean±SEM. Two-group comparison was analyzed by unpaired 2-tailed Student t test, and multiple-group comparison was performed by 1-way ANOVA followed by the Fisher protected least significant difference test for comparison of means. A P value of P<0.05 was considered to be statistically significant.

Results

AT1 Receptor Is Constitutively Activated Without the Involvement of Ang II in AT1 Transgenic-Angiotensinogen Knockout Mice Hearts

To elucidate the pathogenic role of Ang II–independent AT1 receptor activation in the hearts, we crossed transgenic mice overexpressing human AT1 receptor under the control of cardiac-specific α-myosin heavy chain promoter (AT1Tg) with angiotensinogen knockout mice (AgtKO) to generate AT1Tg-AgtKO mice. First, we examined the expression levels of renin-angiotensin system components. Although the mRNA level of the AT2 receptor (Agr2) was significantly higher in AT1Tg-AgtKO hearts than in AgtKO hearts, there was no significant difference in protein levels of the AT2 receptor between AT1Tg-AgtKO and AgtKO hearts (Figure S1 in the online-only Data Supplement). Furthermore, the mRNA levels of the AT1b receptor (Agrt1b), angiotensin-converting enzyme (Ace), and renin (Ren1 and Ren2) did not differ significantly between AT1Tg-AgtKO and AgtKO hearts (Figure S1A).

We next determined the density of the AT1 receptor (Bmax values of receptor binding) in membranes isolated from the ventricles of AgtKO and AT1Tg-AgtKO mice by radioligand binding assays using [125I]-[Sar1, Ile8] Ang II as ligand. Consistent with the previous report,12 the Bmax of AT1 receptor was increased by >200-fold in AT1Tg-AgtKO hearts compared with AgtKO hearts (AT1Tg-AgtKO: 5.41±1.79 pmol/mg of protein; AgtKO: 24.0±13.9 pmol/mg of protein; n=4 per group; P<0.01). Next, to evaluate whether the AT1 receptor is constitutively activated in the AT1Tg-AgtKO hearts, we examined redistribution of Goαq11 into the cytosolic fraction and phosphorylation of extracellular signal–regulated kinases (ERKs) in AgtKO and AT1Tg-AgtKO hearts. On activation of the AT1 receptor, the heterotrimeric Gq protein dissociates into α and βγ subunits, and the GTP-bound Gq subunit stimulates diverse intracellular signaling pathways, including the ERK pathway.15,16 Redistribution of Goαq11 subunits from the particulate to the cytosolic fraction was significantly increased in AT1Tg-AgtKO hearts compared with AgtKO hearts (Figure 1A). In addition, the levels of phosphorylated ERKs in AT1Tg-AgtKO hearts was significantly increased compared with AgtKO hearts (Figure 1B). These results suggest that the AT1 receptor is upregulated and constitutively activated without the involvement of Ang II in the AT1Tg-AgtKO hearts.

AT1Tg-AgtKO Mice Display Progressive Cardiac Remodeling

Tail-cuff measurements of systolic and diastolic blood pressure (BPs) and pulse rates revealed that these parameters did not differ significantly between AgtKO and AT1Tg-AgtKO mice at 20 weeks of age (Table). However, morphological and physiological analysis revealed progressive chamber dilatation, contractile dysfunction, and interstitial fibrosis in AT1Tg-AgtKO mice, whereas cardiac structure and function were normal in AgtKO mice. At 20 weeks of age, AT1Tg-AgtKO mice displayed ≈1.5-fold increase in heart:body.
weight ratio compared with AgtKO mice (Table). Echocardiographic examination revealed a progressive increase in left ventricular end-diastolic dimension and decrease in the percentage of fractional shortening (Figure 2A). Histologically, a significant increase in interstitial fibrosis was observed in AT1Tg-AgtKO mice at 20 weeks of age and further exacerbated at 36 weeks of age (Figure 2B). Furthermore, real-time RT-PCR indicated that mRNA levels of fetal cardiac genes (Nppa, Nppb, and Acta1) and extracellular matrix genes (Col3a1 and Postn) were significantly increased in AT1Tg-AgtKO hearts compared with AgtKO hearts (Figure 2C). These results indicate that upregulation of the AT1 receptor induced spontaneous and progressive cardiac remodeling in AT1Tg-AgtKO mice in spite of systemic deficiency of Ang II.

Cardiac Remodeling in AT1Tg-AgtKO Mice Is Prevented by Treatment With an Inverse Agonist for the AT1 Receptor

We examined whether an AT1 receptor blocker candesartan could prevent the progression of cardiac remodeling in AT1Tg-AgtKO mice. In cultured cells, candesartan reduces the basal activity of both the wild-type AT1 receptor and constitutively active AT1 mutant receptors, suggesting that candesartan is an inverse agonist for the AT1 receptor.1 Candesartan also suppresses mechanical stretch-induced hematical movement and thereby inhibits receptor activation1 and prevents pressure-overload cardiac hypertrophy in mice.5

Tail-cuff measurements revealed a significant increase in systolic BP in 8-week-old C57BL/6 male mice treated with Ang II (0.6 mg/kg per day) for 2 weeks using an osmotic minipump (Figure 3A). This BP elevation was abolished by treatment with candesartan cilexetil (1 mg/kg per day) in drinking water. Candesartan cilexetil is a prodrug that is converted rapidly and completely to candesartan during gastrointestinal absorption.17 Interestingly, treatment with candesartan cilexetil prevented the progression of cardiac remodeling in AT1Tg-AgtKO mice, when treatment was initiated at 6 weeks of age. The increases in heart:body weight ratio (Figure 3B), chamber dilatation and contractile dysfunction (Figure 3C), and interstitial fibrosis (Figure 3D) were significantly attenuated by treatment with candesartan cilexetil. Consistently, real-time RT-PCR indicated that the increases in mRNA levels of fetal cardiac genes (Nppa, Nppb, and Acta1) and extracellular matrix genes (Col3a1 and Postn) in AT1Tg-AgtKO hearts were significantly attenuated by treatment with candesartan cilexetil (Figure 3E).

We reported previously that tight binding between the carboxyl group of candesartan and specific residues of the AT1 receptor was critical for the potent inverse agonism and that a derivative of candesartan (candesartan-7H), lacking the carboxyl group at the benzimidazole ring, could not suppress agonist-independent activities of the receptor.1 Although treatment with candesartan-7H (1 mg/kg per day) had no effect, treatment with candesartan-7H (20 mg/kg per day) suppressed Ang II–induced BP elevation in C57BL/6 male mice, almost equally as treatment with candesartan cilexetil (1 mg/kg per day) did (Figure 3A). However, treatment with candesartan-7H (20 mg/kg per day) did not prevent the increase in heart:body weight ratio (Figure 3B), progression of chamber dilatation, contractile dysfunction (Figure 3C), interstitial fibrosis (Figure 3D), or the increase in mRNA levels of fetal cardiac genes and extracellular matrix genes in AT1Tg-AgtKO mice. Tail-cuff measurements revealed that treatment with candesartan cilexetil and candesartan-7H did not change systolic BP in AT1Tg-AgtKO mice (Figure S2).

Table. Measurement of Heart Weight, Heart Rate, and BP in AgtKO and AT1Tg-AgtKO Mice at 20 wk of Age

<table>
<thead>
<tr>
<th>Parameters</th>
<th>AgtKO</th>
<th>AT1Tg-AgtKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>BW, g</td>
<td>31.0±3.4</td>
<td>30.2±3.5</td>
</tr>
<tr>
<td>HW/BW, mg/g</td>
<td>3.48±0.25</td>
<td>5.08±0.19*</td>
</tr>
<tr>
<td>HR, bpm</td>
<td>556.0±85.3</td>
<td>540.1±55.0</td>
</tr>
<tr>
<td>Systolic BP, mm Hg</td>
<td>83.4±8.8</td>
<td>85.9±3.7</td>
</tr>
<tr>
<td>Diastolic BP, mm Hg</td>
<td>57.3±6.0</td>
<td>55.7±7.4</td>
</tr>
<tr>
<td>Mean BP, mm Hg</td>
<td>65.7±5.3</td>
<td>66.0±5.0</td>
</tr>
</tbody>
</table>

*BW indicates body weight, HR, heart rate; BW/BW, heart:body weight ratio; BP, blood pressure; AgtKO, angiotensinogen-knockout; AT1Tg, angiotensin II type 1 transgenic.

**P<0.01 vs AgtKO mice.
because Ang II is not produced in AT\textsubscript{1}Tg-AgtKO mice. Collectively, these results suggest that cardiac remodeling in AT\textsubscript{1}Tg-AgtKO mice was prevented by candesartan, an inverse agonist for the AT\textsubscript{1} receptor, but not by candesartan-7H, which cannot inhibit Ang II–independent AT\textsubscript{1} receptor activation because of a lack of inverse agonist activity.

Discussion

In several GPCRs, the constitutive activity is closely related to physiological function. For example, constitutive activity of the histamine H\textsubscript{3} receptor controls histaminergic neuron activity in rodents.18 The melanocortin-4 receptor and growth hormone secretagogue receptor have high constitutive activity, and loss of constitutive activity in mutant melanocortin-4 receptors or growth hormone secretagogue receptors leads to obesity or short stature in humans, respectively.19,20 In contrast, constitutively active mutations in several GPCRs give rise to diseases in humans. For example, somatic mutations of thyrotropin-stimulating hormone receptor or luteinizing hormone receptor lead to hyperfunctioning thyroid adenoma or male precocious puberty, respectively.21,22

In the present work, we provide experimental evidence that transgenic myocardial overexpression of the wild-type AT\textsubscript{1} receptor increases constitutive activity of the receptor, leading to cardiac enlargement, interstitial fibrosis, and contractile dysfunction, even in the absence of Ang II. To exclude a
Figure 3. Prevention of cardiac remodeling in angiotensin II (Ang II) type 1 (AT_1) transgenic (AT_1Tg)–angiotensinsogen-knockout (AgtKO) mice by candesartan but not by candesartan-7H. A, Blood pressure–lowering effects of candesartan cilexetil (Can) and candesartan-7H (Can-7H) in Ang II–infused mice. Eight-week–old C57BL/6J male mice were continuously infused with Ang II (0.6 mg/kg per day) and treated with candesartan cilexetil (1 mg/kg per day), candesartan-7H (1, 20 mg/kg per day), or vehicle in drinking water (n=110, in each group). *P<0.05, **P<0.01 vs vehicle-treated group. B, Heart:body weight ratios and gross hearts in AgtKO and AT_1Tg-AgtKO mice (20 weeks of age) treated with Can (1 mg/kg per day), Can-7H (1, 20 mg/kg per day), or vehicle. Data are presented as mean±SEM. Number of mice for each experiment is indicated in the bars. **P<0.01. Scale bars, 5 mm. C, Left ventricular end-diastolic dimension (LVDd) and fractional shortening (FS) of AT_1Tg-AgtKO mice treated with Can or Can-7H. Can (1 mg/kg per day, n=11), Can-7H (1, 20 mg/kg per day; n=7 in each group), or vehicle (n=7) was given for 14 weeks in 6-week–old AT1Tg-AgtKO mice. Data are presented as mean±SEM. *P<0.05, **P<0.01 vs vehicle-treated group. D, Histological sections with Masson trichrome staining in AgtKO and AT_1Tg-AgtKO mice (20 weeks of age) treated with Can (1 mg/kg per day), Can-7H (1, 20 mg/kg per day), or vehicle. Scale bars, 50 μm. E, The mRNA expressions of cardiac genes Nppa, Nppb, and Acta1 and extracellular matrix genes Col3a1 and Postn in AgtKO (lane 1) and AT_1Tg-Agt KO mice (20 weeks of age) treated with Can (1 mg/kg per day; lane 3), Can-7H (1, 20 mg/kg per day; lane 4, 5, respectively), or vehicle (lane 2). Data are presented as mean±SEM. **P<0.01 vs AgtKO mice. NS indicates not significant (P>0.05). □, vehicle; ×, Can-7H (1 mg/kg per d); ▲, Can-7H (10 mg/kg per d); ●, Can-7H (20 mg/kg per d); ○, Can (1 mg/kg per d).
contribution of endogenous Ang II to the activity of AT₁ receptor in native tissues, we used AgtKO mice, deficient in the production of Ang II.13 Furthermore, AT₃TG-AgtKO mice developed cardiac remodeling regardless of whether they were the offspring of Agt⁺/⁺ females or Agt⁻/⁻ females (Figure S3), suggesting that maternal or placental angiotensinogen had little influence on the postnatal development of cardiac remodeling in AT₃TG-AgtKO mice. Among the renin-angiotensin system components, the mRNA level of the AT₂ receptor was significantly upregulated in AT₃TG-AgtKO hearts compared with AgtKO hearts (Figure S1A), but the protein level of the AT₁ receptor was comparable between AT₃TG-AgtKO and AgtKO hearts. Therefore, we believe that constitutive activity of the AT₁ receptor is sufficient for inducing structural and functional cardiac remodeling, when the AT₁ receptor is upregulated in the hearts.

Redistribution of Goₐ₁₁ into the cytosolic fraction in AT₃TG-AgtKO hearts (Figure 1A) indicates that constitutive activity of the AT₁ receptor is mediated through the Goₐ₁₁-dependent signaling pathway. On binding to Ang II, the AT₁ receptor is phosphorylated by GPCR kinases and recruits β-arrestins, leading to clathrin-coated, pit-dependent internalization and then recycling to the plasma membrane.23 It has been reported that constitutively active mutant AT₁ receptors are constitutively internalized and recycled when overexpressed in HEK293 cells.24 In contrast, we showed previously, by immunofluorescence analysis, that the wild-type AT₁ receptor was predominantly localized in the plasma membrane of HEK293 cells expressing the AT₁ receptor.1 In addition, the expression levels of GPCR kinase 2 and β-arrestins in the particulate fraction relative to the cytosolic fraction were comparable between AT₃TG-AgtKO and AgtKO hearts (Figure S4). Therefore, we suppose that, in the absence of Ang II, wild-type AT₁ receptor stochastically undergoes subtle and transient conformational changes, leading to partial activation of Goₐ₁₁-dependent signaling without inducing detectable receptor internalization. The AT₁ receptor can also stimulate G protein–independent diverse signaling pathways involving β-arrestins, tyrosine kinases, reactive oxygen species, and AT₁ receptor–associated proteins.19 Further structure-function analysis will be needed to elucidate the full breadth of the molecular mechanisms and signal transduction network that mediate agonist-independent AT₁ receptor activation in the hearts.

It has been reported that the AT₁ receptor is upregulated in stressed hearts of spontaneously hypertensive rats,25 2-kidney 1-clip renovascular hypertensive rats,25 Tsukuba hypertensive mice,26 and rats with myocardial infarction.27 Furthermore, we observed that cardiac expression of the AT₁ receptor was increased ~8-fold in pressure-overloaded mice after transverse aortic constriction (Bmax: 142.9 ± 36.5 fmol/mg; n = 3) compared with sham-operated mice (Bmax: 16.4 ± 4.9 fmol/mg; n = 3). In addition, it has been reported that the AT₁ receptor is upregulated in response to low-density lipoprotein cholesterol,28 insulin,29 glucose,30 progesterone,31 and inflammatory cytokines, such as interleukin 1α or interleukin 6,32,33 in vascular cells. Therefore, it seems quite reasonable to assume that enhancement of constitutive activity of the AT₁ receptor through upregulation of receptor expression may accelerate the progression of atherosclerosis in patients with hypercholesterolemia or diabetes mellitus, especially after menopause. Further studies in animal models will be required to clarify the roles of constitutive activity of the AT₁ receptor in the pathogenesis of cardiovascular and metabolic disorders.

We also demonstrate that treatment with candesartan, inverse agonist for the AT₁ receptor, effectively prevents cardiac remodeling in AT₃TG-AgtKO mice. The inverse agonist activity of ARBs may provide clinical advantage of inhibiting both Ang II–dependent and -independent receptor activation and, thus, be an important pharmacological parameter defining the beneficial effects on organ protection.3 Several ARBs are currently available for the treatment of hypertension and heart failure with reduced left ventricular ejection fraction, and their potency of inverse agonist activity differs according to the distinct chemical structure of the drug.3 For example, the inhibitory effect of olmesartan on both constitutive activity and stretch-induced activation of the AT₁ receptor was significantly higher than that of losartan.2 According to a recent article,34 the use of candesartan was associated with lower all-cause mortality than the use with losartan in a Swedish registry of patients with heart failure. Although EXP3174, an active metabolite of losartan, can act as an inverse agonist,8 it is tempting to speculate that the potent inverse agonist activity of candesartan may explain some of its association with lower mortality in patients with heart failure.

Perspectives
Blockade of the renin-angiotensin system has been shown to be beneficial in patients with hypertension, especially those with cardiovascular and metabolic complications. Our findings show that constitutive activity of the AT₁ receptor contributes to the progression of cardiac remodeling even in the absence of Ang II, when the AT₁ receptor is upregulated in the heart. Inverse agonism of ARBs provides therapeutic effects in the prevention of cardiac remodeling induced by constitutive activity of AT₁ receptor and, thus, has potential impact on long-term outcomes in patients with hypertension. Our work is the first proof-of-principle experiment, to our knowledge, on the in vivo importance of constitutive activity of a native GPCR in the pathogenesis of diseases. Beyond in vitro pharmacological tools, inverse agonists emerge as promising pharmacological candidates in treating diseases caused by enhancement of constitutive activity through upregulation of GPCRs.

Acknowledgments
We thank Drs Sin-ichiro Miura (Fukuoka University) and Motohiro Nishida (Kyushu University) for technical advice and Akane Furuyama, Megumi Ikeda, Yuko Ohtsuki, and Ikuko Sakamoto for their excellent technical assistance.

Sources of Funding
This work was supported in part by grants from Japan Society for the Promotion of Science (KAKENHI 20390218, 21229010, and 23390213; to I.K. and H.A.), Health and Labor Sciences Research grants, Kowa Life Science Foundation, Takeda Science Foundation, Astellas Foundation for Research on Metabolic Disorders, the Uehara Memorial Foundation, the Ichiro Kanehara Foundation,
Yasuda et al

Constitutive Activity of Angiotensin Receptor

Mochida Memorial Foundation for Medical and Pharmaceutical Research, and Suzukien Memorial Foundation (to H.A.).

Disclosures
None.

References

Agonist-Independent Constitutive Activity of Angiotensin II Receptor Promotes Cardiac Remodeling in Mice

Hypertension. 2012;59:627-633; originally published online January 30, 2012;
doi: 10.1161/HYPERTENSIONAHA.111.175208

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/59/3/627

An erratum has been published regarding this article. Please see the attached page for:
/content/59/5/e51.full.pdf

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2012/01/27/HYPERTENSIONAHA.111.175208.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Correction

Pierre Paradis’s name was erroneously omitted from the author line. He has made the transgenic mice AGTR1, which are very important for this study.

The corrected author line and affiliations are as follows: Noritaka Yasuda, Hiroshi Akazawa, Kaoru Ito, Ippei Shimizu, Yoko Kudo-Sakamoto, Chizuru Yabumoto, Masamichi Yano, Rie Yamamoto, Yukako Ozasa, Tohru Minamino, Atsuhiko T. Naito, Toru Oka, Ichiro Shiojima, Kouichi Tamura, Satoshi Umemura, Pierre Paradis, Mona Nemer, Issei Komuro

From the Department of Cardiovascular Science and Medicine (N.Y., K.I., Ip.S., R.Y., Y.O., T.M.), Chiba University Graduate School of Medicine, Chiba, Japan; Departments of Cardiovascular Medicine (H.A., Y.K.-S., C.Y., M.Y., T.O., I.K.) and Cardiovascular Regenerative Medicine (A.T.N., Ic.S.), Osaka University Graduate School of Medicine, Suita, Japan; Department of Medical Science and Cardiorenal Medicine (K.T., S.U.), Yokohama City University Graduate School of Medicine, Yokohama, Japan; Lady Davis Institute for Medical Research (P.P.), Sir Mortimer B. Davis-Jewish General Hospital, McGill University, Montreal, Quebec, Canada; Laboratory of Cardiac Growth and Differentiation (M.N.), Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.

On page 628, first paragraph of the Methods section, the first sentence following the subheading, the name of a gene is not correct: it should be “AGTR1”, not “AGTR1a”. This change affects none of the observations or conclusions made in the article.

The authors regret these errors.

These corrections have been made to the current online version of the article, which is available at http://hyper.ahajournals.org/content/59/3/627.full.
ONLINE SUPPLEMENT

AGONIST-INDEPENDENT CONSTITUTIVE ACTIVITY OF ANGIOTENSIN II RECEPTOR PROMOTES CARDIAC REMODELING IN MICE

Noritaka Yasuda¹, Hiroshi Akazawa², Kaoru Ito¹, Ippei Shimizu¹, Yoko Kudo-Sakamoto², Chizuru Yabumoto², Masamichi Yano², Rie Yamamoto¹, Yukako Ozasa¹, Tohru Minamino¹, Atsuhiko T. Naito³, Toru Oka², Ichiro Shiojima³, Kouichi Tamura⁴, Satoshi Umemura⁴, Mona Nemer⁵, Issei Komuro²

1. Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
2. Department of Cardiovascular Medicine,
3. Department of Cardiovascular Regenerative Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
4. Department of Medical Science and Cardiorenal Medicine, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
5. Laboratory of Cardiac Growth and Differentiation, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 550 Cumberland, Ottawa, Ontario K1N 6N5, Canada

Correspondence to:
Issei Komuro, M.D., Ph.D.
Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
TEL: +81-6-6879-3631
FAX: +81-6-6879-3639
E-mail: komuro-tky@umin.ac.jp
Supplemental Materials and Methods

Mice, TAC operation, and transthoracic echocardiography

Mice expressing the human AGTR1a gene under the control of \(\alpha\)-myosin heavy chain (MHC) promoter and mice deficient for Agt gene were previously described \(^1\), \(^2\). We crossed AGTR1a \(^{tg0}\) mice (on the C57BL/6 background) with Agt \(^{+/+}\) mice (on the ICR background), and then bred the resulting AGTR1a \(^{tg0}/\text{Agt}^{+/-}\) offspring with Agt \(^{+/+}\) mice to generate AGTR1a \(^{tg0}/\text{Agt}^{+/+}\) (AT1Tg), AGTR1a \(^{tg0}/\text{Agt}^{+/+}\) (AT1Tg-AgtKO), and AGTR1a \(^{wg0}/\text{Agt}^{+/+}\) (AgtKO) mice. We also generated AGTR1a \(^{tg0}/\text{Agt}^{+/+}\) (AT1Tg-AgtKO) by crossing AGTR1a \(^{tg0}/\text{Agt}^{+/+}\) with Agt \(^{+/+}\) mice. C57BL/6 mice were purchased from Japan SLC. Candesartan and candesartan-7H were synthesized in Takeda Pharmaceutical Co., Ltd., and administered via drinking water. For TAC operation, 10-week-old male mice were anesthetized by i.p. injection of pentobarbital (50 mg/kg), and respiration was artificially controlled with a tidal volume of 0.2 ml and a respiratory rate of 110 breaths/min. The transverse aorta was constricted with 7-0 nylon strings by ligating the aorta with splinting a blunted 27 gauge needle, which was removed after the ligation. After aortic constriction, the chest was closed and mice were allowed to recover from anesthesia. We confirmed that the magnitude of initial pressure elevation after aortic banding was identical in all groups of mice. The surgeon had no information about the mice used in this study. For evaluation of cardiac dimensions and contractility, transthoracic echocardiography was performed on conscious mice with Vevo 770 Imaging System using a 25 MHz linear probe (Visual Sonics). All protocols were approved by the Institutional Animal Care and Use Committee of Chiba University.

Ang II infusion and BP measurement

Ang II (Sigma-Aldrich) was dissolved in 0.9% saline. Eight-week-old C57BL/6J male mice were treated with Ang II (0.6 mg/kg/day) or vehicle for 2 weeks using an osmotic mini-pump (ALZET model 2002; Durent Corp.). The systolic and diastolic BP and pulse rates were measured in conscious mice noninvasively by a programmable sphygmomanometer (BP-98A, Softron) using the tail-cuff method.

Real-time RT-PCR analysis

Total RNA was extracted by using RNeasy Kit (Qiagen), and single-stranded cDNA was transcribed by using QuantiTect Reverse Transcription Kit (Qiagen), according to the manufacturer's protocol. We conducted quantitative real-time PCR analysis with the Universal ProbeLibrary Assays (Roche Applied Science), according to the manufacturer's instructions. Amplification conditions were initial denaturation for 10 min at 95°C followed by 45 cycles of 10 s at 95°C and 25 s at 60°C. Individual PCR products were analyzed by melting-point analysis. The expression level of a gene was normalized relative to that of Gapdh by using a comparative Ct method. The primer sequences and Universal Probe numbers were designed with the ProbeFinder software as following: Agtr1b, 5’-cgccagagcacttgaga-3’ and 5’-ggagaggggtgaattcaaaa-3’, No. 32; Agtr2, 5’-ggagctcggaactgaaagc-3’ and 5’-ctgcagcaactccaaattctt -3’, No. 41; Ace, 5’-tatgcccctggaacctgat-3’ and 5’-gatggctctccccacctt-3’, No. 78; Ren1, 5’-ggaggaagtgtcctgtgctactaca-3’ and 5’-tegctacetctagcaccac-3’, No. 3; Ren2, 5’-tcgcagagaactgaaagc-3’ and 5’-ctgcagcaactccaaattctt -3’, No. 41; Ace, 5’-tatgcccctggaacctgat-3’ and 5’-gatggctctccccacctt-3’, No. 78; Ren1, 5’-ggaggaagtgtcctgtgctactaca-3’ and 5’-tegctacetctagcaccac-3’, No. 3; Ren2,
5’-catggagaatggagacgactt-3’ and 5’-cacagtgattccacccacag-3’, No. 102; Nppa,
5’-cacagatctgatggatttcaaga-3’ and 5’-cctcatcttctaccggcatc-3’, No. 25; Nppb,
5’-gtcagtcgtttgggctgtaac-3’ and 5’-agacccaggcagagtcagaa-3’, No. 71; Acta1,
5’-agctatgagctgcctgacg-3’ and 5’-atccccgcagactccatac-3’, No. 9; Col3a1, 5’-
tcccctggaatctgtgaatc-3’ and 5’-tgagtcgaattggggagaat-3’, No. 49; Postn, 5’-
cgggaagaacgaatcattaca-3’ and 5’-accttggagacctctttttgc-3’, No. 10; Gapdh, 5’-
tgctcgcttgatctgac-3’ and 5’-cctgcttcaccaccttttg-3’, No. 80.

Western blot analysis and subcellular fractionation

Protein samples were fractionated with SDS–PAGE, transferred to PVDF membranes (GE Healthcare Biosciences). The blotted membranes were incubated with primary antibody, followed by horseradish peroxidase-conjugated secondary antibody (Jackson ImmunoResearch Laboratories). Immunoreactive signals were visualized using ECL Plus Western Blotting Detection System (GE Healthcare Biosciences). Following antibodies were used: rabbit polyclonal anti-Grαq/11 antibody, goat polyclonal anti-GAPDH antibody (Santa Cruz Biotechnology, Inc.), rabbit polyclonal anti-phospho-ERK1/2 antibody (Cell Signaling Technology), rabbit polyclonal anti-ERK1/2 antibody (Invitrogen), rabbit polyclonal anti-AT2 receptor antibody (Alomone Labs), mouse monoclonal anti-GRK2 antibody (Santa Cruz), and mouse monoclonal anti-β-arrestin 1/2 antibody (Santa Cruz).

For subcellular fractionation, heart samples were homogenized in lysis buffer (25 mM Tris HCl pH 7.4, 5 mM EGTA, 2 mM EDTA, 100 mM NaF, 5 mM DTT) plus protease inhibitors (Complete mini; Roche Applied Science). The lysates were centrifuged at 500 g for 20 min to pellet unbroken cells and nuclei. The supernatant was centrifuged at 100,000 g for 60 min, and the supernatant was designated as the cytosolic fraction. The pellets were then resuspended as the membrane-particulate fraction in lysis buffer with 1% Triton X-100.

Histological analysis

Hearts were excised, fixed immediately in 10% neutralized formalin, and embedded in paraffin. Serial sections at 5 µm were stained with Masson’s trichrome for evaluation of fibrosis.

Radioligand receptor binding assay

Radioligand-binding assays were performed as described previously. 3-5 The protein in membrane fraction was incubated with 100 pM [125I]-[Sar1, Ile8] Ang II (Perkin Elmer) for 1 hr at 22°C. Binding reaction was terminated by filtering the incubation mixture through Whatman GF/C glass filters (GE healthcare Biosciences), and the residues were extensively washed further with binding buffer. The bound ligand fraction was determined from the counts per minute (cpm) remaining on the membrane. Binding kinetics values were determined with the LIGAND computer program (Elsevier-Biosoft), as previously described 3-5.

Statistics

All data are presented as means ± SEM. Two-group comparison was analyzed by unpaired 2-tailed Student’s t test, and multiple-group comparison was performed by one-way ANOVA followed by the Fisher’s PLSD test for comparison of means. A probability value of P < 0.05 was considered to be statistically significant.
References

Figure S1. Expression levels of the renin-angiotensin system components in AT1Tg-Agt KO and AgtKO hearts. (A) The mRNA expressions of the renin-angiotensin system components in AT1Tg-Agt KO (n = 6) and AgtKO hearts (n = 6) at 20 weeks of age. Data are presented as mean ± SEM. * P < 0.05 versus AgtKO mice. (B) Immunoblot analysis of AT2 receptor in AgtKO (n = 4) and AT1Tg-AgtKO (n = 4) hearts at 20 weeks of age. GAPDH was used as an internal control for loading. The quantitation of the AT2 receptor /GAPDH is shown as a bar graph. Data are presented as mean ± SEM. NS, not significant (P > 0.05).
Figure S2. Systolic BP in AT$_1$Tg mice treated with vehicle ($n=9$), AgtKO mice treated with vehicle ($n=6$), AT$_1$Tg-AgtKO mice treated with vehicle ($n=6$), candesartan cilexetil (Can) (1 mg/kg/day, $n=8$) or candesartan-7H (Can-7H) (1 mg/kg/day, $n=5$ or 20 mg/kg/day, $n=5$). BP was measured in 20-week-old mice after the treatment for 14 weeks. Data are presented as mean ± SEM. **$P < 0.01$ versus AgtKO mice.
Figure S3. AT1 Tg-AgtKO mice developed cardiac remodeling independently of the effects of maternal or placental angiotensinogen during the fetal period. Left ventricular end-diastolic dimension (LVDd) and fractional shortening (FS) of AT1 Tg-AgtKO offspring of Agt +/- females (n = 4) or Agt +/- females (n = 4), measured by echocardiogram at 6 and 10 weeks of age. Data are presented as mean ± SEM.
Figure S4. Immunoblot analysis of GRK2 and β-arrestin 1/2 in particulate fraction (PF) and cytosolic fraction (CF) extracted from AgtKO (n = 4) and AT_1 Tg-Agt KO (n = 4) hearts. The quantitation of GRK2 in PF/CF and β-arrestin 1/2 in PF/CF is shown as bar graphs. Data are presented as mean ± SEM. NS, not significant (P > 0.05).