Orthostatic Hypotension as a Risk Factor for Incident Heart Failure
The Atherosclerosis Risk in Communities Study
Christine D. Jones, Laura Loehr, Nora Franceschini, Wayne D. Rosamond, Patricia P. Chang, Eyal Shahar, David J. Couper, Kathryn M. Rose

Abstract—Heart failure causes significant morbidity and mortality. Distinguishing risk factors for incident heart failure can help identify at-risk individuals. Orthostatic hypotension may be a risk factor for incident heart failure; however, this association has not been fully explored, especially in nonwhite populations. The Atherosclerosis Risk in Communities Study included 12363 adults free of prevalent heart failure with baseline orthostatic measurements. Orthostatic hypotension was defined as a decrease of systolic blood pressure ≥20 mmHg or diastolic blood pressure ≥10 mmHg with position change from supine to standing. Incident heart failure was identified from hospitalization or death certificate disease codes. Over 17.5 years of follow-up, orthostatic hypotension was associated with incident heart failure with multivariable adjustment (hazard ratio: 1.54 [95% CI: 1.30–1.82]). This association was similar across race and sex groups. A stronger association was identified in younger individuals ≤55 years old (hazard ratio: 1.90 [95% CI: 1.41–2.55]) than in older individuals >55 years old (hazard ratio: 1.37 [95% CI: 1.12–1.69]; interaction P=0.034). The association between orthostatic hypotension and incident heart failure persisted with exclusion of those with diabetes mellitus, coronary heart disease, and those on antihypertensives or psychiatric or Parkinson disease medications. However, exclusion of those with hypertension somewhat attenuated the association (hazard ratio: 1.34 [95% CI: 1.00–1.80]). We identified orthostatic hypotension as a predictor of incident heart failure among middle-aged individuals, particularly those 45 to 55 years of age. This association may be partially mediated through hypertension. Orthostatic measures may enhance risk stratification for future heart failure development. (Hypertension. 2012;59:913-918.)

Key Words: heart failure ■ risk factors ■ circulation ■ hypotension ■ autoregulation

In 2007, ≈1000000 hospitalizations and ≥277000 deaths in the United States were related to heart failure (HF).1,2 Over the past 3 decades in the United States, HF prevalence has increased to affect 5.8 million people.3,4 Early identification of individuals at risk for HF is critical to aggressively modify known HF risk factors, including diabetes mellitus (DM), hypertension, and coronary heart disease (CHD).5–7 Of interest, orthostatic hypotension (OH), has been associated with an increased risk for hypertension,8 CHD,9,10 and mortality.9,11,12 Orthostasis has been implicated recently in HF development in 2 subgroups of a cohort study in elderly Dutch, those with DM and those in the oldest age group (mean: 78 years; range: 71–99 years).9 In addition, a recent cohort study in middle-aged Swedish adults (age range: 26–61 years) found an association between OH and incident HF that attenuated somewhat after adjustment for traditional HF risk factors.13

Previous studies of the association between OH and HF have largely been in white populations and older individuals. In addition, medications known to cause OH, such as antihypertensive, Parkinson, and psychiatric medications, have not frequently been included in previous analyses. Thus, we sought to evaluate whether OH is associated with incident clinical HF in middle-aged white and black participants in the Atherosclerosis Risk in Communities (ARIC) Study; we also sought to further evaluate the contribution of specific medications and known HF risk factors to this relationship. We hypothesized that OH in middle-aged adults would be associated with incident HF and that this association would be robust to the exclusion of those with HF risk factors at baseline (DM, hypertension, and CHD), individuals taking psychiatric or Parkinson disease medications, and individuals taking antihypertensives that have been associated previously with OH. We also investigated age as an effect modifier of this association.

Methods

Study Population
The ARIC Study is an ongoing longitudinal, population-based study of men and women aged 45 to 64 years at enrollment from the

Received December 2, 2011; first decision December 26, 2011; revision accepted February 17, 2012.
From the Preventive Medicine Residency, Department of Social Medicine (C.D.J.), and Departments of Epidemiology (C.D.J., L.L.L., N.F., W.D.R., K.M.R.), Cardiology (P.P.C.), and Biostatistics (D.J.C.), University of North Carolina at Chapel Hill, Chapel Hill, NC; Division of Epidemiology and Biostatistics (E.S.), University of Arizona, Tucson, AZ; SRA International, Inc (K.M.R.), Durham, NC.
Correspondence to Christine DeLong Jones, University of North Carolina Preventive Medicine Residency Program, 121B MacNider Building, CB# 7240, Chapel Hill, NC 27599-7240. E-mail cdljones@uch.unc.edu
© 2012 American Heart Association, Inc.
Hypertension is available at http://hyper.ahajournals.org
DOI: 10.1161/HYPERTENSIONAHA.111.188151
following 4 US communities: (1) Jackson, Mississippi; (2) Washington County, Maryland; (3) 8 northern suburbs of Minneapolis, Minnesota; and (4) Forsyth County, North Carolina. The racial distributions in the Maryland and Minneapolis communities were representative of the area, whereas blacks were oversampled in Forsyth County (15%) and exclusively sampled in Jackson. There was a 46% response to participate in the initial examination in Jackson and between a 65% and 67% response for the other sites. The institutional review boards from each site approved the ARIC Study, and informed consent was obtained from all of the participants. The ARIC Study design and rationale and a comparison between responders and nonresponders have been published previously.14,15

From the 15792 baseline examinees, we excluded race groups other than black or white, as well as blacks in Minneapolis and Washington County (n=89). Postural blood pressure (BP) measurements used to define OH were performed at baseline examinations between 1987 and 1989. We excluded those with missing data for seated BP (n=3) and those missing OH measures (n=2376). Most missing OH measures were from participants enrolled in the first 6 months of the study, before implementation of postural BP measurement. We also excluded individuals with atrial fibrillation on 2-minute rhythm strip at baseline (n=29) and those with prevalent HF (n=606) and/or missing information that precluded the determination of prevalent HF (n=213) at baseline. Those with prevalent HF were excluded from this analysis by the following criteria: answering "yes" when asked, "Were any of the medications you took during the last 2 weeks for heart failure?" or stage 3 or "manifest HF" by Gothenburg criteria.16 The remaining 12363 participants were included in this study.

OH Definition

At baseline examination, a Dinamap 1846 SX oscillometric device was used to ascertain supine and standing BP measurements with a standardized protocol. Supine BP measurement followed an ~20-minute supine ultrasound examination; measurements were taken at 30-second intervals for 2 minutes (range of 2–5 measurements). Participants then stood upright, and a standing BP measurement was taken as their feet touched the ground. Standing BP measurements continued at 30-second intervals for 2 minutes (range of 2–5 measurements). OH was defined as a decrease in systolic BP ≥20 mmHg or a decrease in diastolic BP ≥10 mmHg when the average supine BP was compared with the average standing BP after exclusion of the first standing BP measurement.12,17 OH was identified in 612 individuals at the baseline examination.

Ascertainment of Incident HF

Incident HF cases were ascertained through 2008 (mean: 17.5 years of follow-up) and were ascertained through annual contacts and review of International Classification of Diseases (ICD) codes from hospitalizations and death certificates. Incident HF (N=1720) was defined as the first occurrence of either hospital ICD-9 “428.x” (in any position in the diagnosis codes) or ICD-9 “428” or ICD-10 “I50” listed on a death certificate (in any position in the diagnosis codes). In HF cases defined by hospitalization with an HF diagnosis, the date of admission was used to define the date of incident HF.

Covariate Definitions

All of the covariate measurements were obtained at baseline. Age, sex, race, educational level, alcohol use, medication use, and smoking status were obtained by self-report from the baseline questionnaire. Height and weight were measured by technicians; body mass index was calculated as weight (in kilograms) divided by height squared (in meters squared). A history of CHD included previous myocardial infarction (defined by either self-report of physician-diagnosed myocardial infarction or by silent myocardial infarction as identified by electrocardiography) or a previous coronary revascularization procedure or coronary artery bypass surgery. Left ventricular hypertrophy was identified by electrocardiography using Cornell criteria.18 DM was defined as any of the following:

Table 1. Characteristics of the Atherosclerosis Risk in Communities Population (N=12 363) at Baseline (1987–1989) by Development of Incident HF

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Incident HF (N=1720)</th>
<th>No Incident HF (N=10 643)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age ≥55 y, %*</td>
<td>60</td>
<td>38</td>
</tr>
<tr>
<td>Male, %</td>
<td>53</td>
<td>44</td>
</tr>
<tr>
<td>Black, %</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>BMI >30, %*</td>
<td>40</td>
<td>24</td>
</tr>
<tr>
<td>Study center, %*</td>
<td>31</td>
<td>22</td>
</tr>
<tr>
<td>Jackson, MS</td>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>Forsyth County, NC</td>
<td>17</td>
<td>27</td>
</tr>
<tr>
<td>Minneapolis, MN</td>
<td>28</td>
<td>24</td>
</tr>
<tr>
<td>Washington County, MD</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Less than high school education, %*</td>
<td>38</td>
<td>20</td>
</tr>
<tr>
<td>Current smoker, %*</td>
<td>36</td>
<td>24</td>
</tr>
<tr>
<td>Current alcohol use, %*</td>
<td>46</td>
<td>59</td>
</tr>
<tr>
<td>Parkinson or psychiatric medications, %*</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td>Diabetes mellitus, %*</td>
<td>29</td>
<td>8</td>
</tr>
<tr>
<td>Mean supine systolic BP, mm Hg (SE)*</td>
<td>136 (0.6)</td>
<td>123 (0.2)</td>
</tr>
<tr>
<td>Mean heart rate, bpm (SE)*</td>
<td>69 (0.3)</td>
<td>66 (0.1)</td>
</tr>
<tr>
<td>Left ventricular hypertrophy, %*</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Coronary heart disease, %*</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Orthostatic hypotension, %*</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Hypertension, %*</td>
<td>53</td>
<td>29</td>
</tr>
<tr>
<td>ACE inhibitors †,‡</td>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>β-Blockers†</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Diuretics†</td>
<td>41</td>
<td>41</td>
</tr>
</tbody>
</table>

*HF indicates heart failure; BMI, body mass index; BP, blood pressure; ACE, angiotensin-converting enzyme.

†Data show percentages among participants with hypertension.

‡P<0.0001.

§P=0.006 among participants with hypertension.

self-reported history of physician-diagnosed DM, recent use of medication for DM, fasting blood glucose concentration ≥126 mg/dL, or nonfasting blood glucose concentration ≥200 mg/dL. Methods for the measurement of blood levels of glucose have been described previously.19 Standardized methodology was used to measure BP and resting heart rate, as described previously.15 Hypertension was defined as either resting seated systolic BP ≥140 mmHg or diastolic BP ≥90 mmHg or recent use of antihypertensive medications. Seated BP was measured at the beginning of the baseline examination following a 5-minute resting period; BP values were the average of the second and third measurements.15

Statistical Analysis

We modeled the relationship between OH and time to incident HF using multivariable Cox proportional hazards regression. Log-negative log survival curves and time interaction tests were used to evaluate the proportional hazard assumption for OH and all covariates. Models were adjusted for all of the above covariates. Additional models were stratified by age, race, and sex. In secondary analyses, we excluded those with DM (n=1236); hypertension (n=3807); CHD (n=414); those taking psychiatric or Parkinson disease medications (n=726); those taking antihypertensives, including angiotensin-converting enzyme (ACE) inhibitors, diuretics, and β-blockers (n=2758); and those who were censored or developed HF (n=175) in the first 2 years of the study. Calcium channel blockers were not included in the medication analysis because of less...
frequent association with OH; clonidine was also not included in this analysis, because no participants were taking this medication at baseline. All of the analyses were performed using SAS 9.1 (SAS Institute, Cary, NC).

Results

Those who developed HF during follow-up (n = 1720) were more likely to be >55 years old, male, black, obese, to have less than a high school education, and were less likely to be current alcohol users (Table 1). Known HF risk factors, including DM, hypertension, and CHD, were more common among individuals who developed incident HF. OH at baseline was 7% more common among those who developed incident HF (11%) than those who did not (4%). When ACE inhibitor, β-blocker, and diuretic use were evaluated among participants with hypertension at baseline, ACE inhibitor use was more common among those who developed HF than those who did not (13% versus 10%); β-blocker and diuretic use did not significantly differ among hypertensives for development of incident HF. We additionally found that the average supine systolic BP at baseline was ≈22 mmHg higher in those with OH (n = 612; systolic BP: 146 mmHg; SE: 1.0) than in those without OH (n = 11751; systolic BP: 124 mmHg; SE: 0.2).

We identified a strong unadjusted association between baseline OH and incident HF (hazard ratio [HR]: 3.02 [95% CI: 2.59–3.52]; Figure 1). We then adjusted for several covariates collected at baseline that had the potential to be confounders; we found that the association was somewhat attenuated but still robust (HR: 1.54 [95% CI: 1.30–1.82]; Table 2).

In a secondary age-stratified analysis, we noted a higher HR for participants ≥55 years old (HR: 1.90 [95% CI: 1.41–2.55]) compared with those >55 years old (HR: 1.37 [95% CI: 1.12–1.69]; P = 0.034 for age interaction). In analyses stratified by race and sex, associations persisted in all of the groups with no significant variation in magnitude between the various race and sex groups (Table 2).

In additional secondary analyses excluding participants with baseline DM and CHD, we found little change in the association between baseline OH and incident HF (Table 2). However, the association between baseline OH and incident HF was attenuated with exclusion of those with hypertension at baseline (HR: 1.34 [95% CI: 1.00–1.80]). Yet, the HR for incident HF was not markedly higher in those with baseline OH and hypertension (HR: 1.63 [95% CI: 1.33–2.01]). We additionally found that excluding individuals taking ACE inhibitors, β-blockers, or diuretics at baseline yielded very little change in the association between OH and HF (HR: 1.47 [95% CI: 1.17–1.85]). Neither exclusion of individuals on psychiatric or Parkinson medications at baseline nor exclusion of HF cases occurring during the first 2 years of follow-up yielded a substantial change in the association between OH and incident HF (Table 2).

Discussion

In a population-based cohort of white and black middle-aged adults, we found a significant association between OH and incident HF that was robust to adjustment for multiple HF risk factors. This association did not differ substantially between groups stratified by sex and race. Interestingly, we found that the association between OH and HF was stronger for those ages 45 to 55 years than for those ages 56 to 64 years. Previous studies have been limited to largely white populations, the elderly, and in some cases have lacked information on medications known to cause OH. Our findings were robust to the exclusion of participants with DM, CHD, those taking psychiatric or Parkinson medications, and those taking specific antihypertensives (ACE inhibitors, diuretics, and β-blockers). However, exclusion of those with hypertension modestly attenuated the association between OH and HF.

Numerous compensatory mechanisms work to maintain BP immediately after positional change from supine to upright. The carotid baroreceptor response plays a major role in this process by increasing sympathetic activity and inhibiting parasympathetic activity, in turn leading to catecholamine release, vasoconstriction, and increased heart rate. Abnormalities in any of these processes can lead to OH.
OH has been observed in patients with DM, in whom autonomic neuropathy, a subtype of diabetic peripheral neuropathy, is the main cause of OH. Diabetic autonomic neuropathy can cause dysfunction of autonomic nerves that regulate cardiac function and vascular response to positional changes to ultimately result in OH. In addition, insulin has inherent vasodilatory effects that may contribute to OH in diabetics. However, we found that OH was associated with HF even among individuals without DM at baseline, suggesting that diabetic autonomic neuropathy was not a substantial contributor to this relationship.

In hypertensive individuals with OH, proposed pathophysiological mechanisms for OH include impaired baroreceptor responsiveness, increased vascular stiffness related to arteriosclerosis, presence of left ventricular hypertrophy, and medication-related adverse effects. Anti hypertensive medications, including diuretics and ACE inhibitors, have been associated with OH. However, certain β-blockers have been theorized to have potential pressor effects in elderly, mildly hypertensive patients. In our study, hypertension was defined to include those with elevated BP or reported antihypertensive medication use at baseline. When participants with hypertension were excluded, the association between OH and HF attenuated somewhat, which may have been partly related to loss of statistical power, because a large number of participants were excluded from the analysis. This attenuation was not likely attributed to the effect of antihypertensive medications, because exclusion of individuals taking ACE inhibitors, diuretics, or β-blockers at baseline had little effect on the association between OH and HF. The attenuation may suggest that hypertension and OH could contribute to incident HF through a similar pathway, such as through recumbent hypertension, because supine BP was higher in those with OH than in those without OH at baseline. However, it is important to note that adjusting for supine BP in our overall adjusted model did not eliminate the association between OH and HF.

Although the exact mechanism for OH that precedes HF development is uncertain, we speculate that early atherosclerotic disease may affect one or more of the previously described compensatory responses to positional change and manifest as OH before HF development. Furthermore, because many conditions, including hypertension, DM, and CHD, are associated with both OH and HF, such competing factors may facilitate the association between OH and HF.

To address possible underascertainment of prevalent HF at baseline, we performed an analysis excluding those with an HF hospitalization during the first 2 years of follow-up, which yielded very little change in the association between OH and HF (Figure 2). A 2-year time period was selected for this analysis, because most prevalent HF cases would likely require hospital admission over the course of 2 years.

Of interest, we found that age was a significant effect modifier of the association between OH and incident HF; the association was stronger in adults 45 to 55 years old (HR: 1.70 [95% CI: 1.38–2.10]) compared with those 56 to 64 years old (HR: 1.42 [95% CI: 1.11–1.82]) compared with those 56 to 64 years old (HR: 1.42 [95% CI: 1.11–1.82]). In a Swedish population-based cohort study, younger adults 26 to 44 years old with OH also had higher risk of incident HF (HR: 2.43 [95% CI: 1.48–3.97]) than older adults 45 to 61 years old (HR: 1.16 [95% CI: 0.90–1.48]). However, the opposite association with age was found in a population-based cohort study.

Table 2. Association of Baseline Orthostatic Hypotension With Incident HF, Stratified by Age, Race/Sex, and Secondary Analyses With Exclusions: The Atherosclerosis Risk in Communities Study (1987–2008)

<table>
<thead>
<tr>
<th>Models</th>
<th>Incident HF Hazard Ratios</th>
<th>95% CIs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unadjusted</td>
<td>12,363</td>
<td>3.02</td>
</tr>
<tr>
<td>Overall adjusted†</td>
<td>11,743</td>
<td>1.54</td>
</tr>
<tr>
<td>Age-stratified analysis†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age ≤55 y</td>
<td>6,868</td>
<td>1.90</td>
</tr>
<tr>
<td>Age >55 y</td>
<td>4,875</td>
<td>1.37</td>
</tr>
<tr>
<td>Race- and sex-stratified analysis†</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White women</td>
<td>4,528</td>
<td>1.59</td>
</tr>
<tr>
<td>Black women</td>
<td>1,885</td>
<td>1.60</td>
</tr>
<tr>
<td>White men</td>
<td>4,155</td>
<td>1.31</td>
</tr>
<tr>
<td>Black men</td>
<td>1,175</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Secondary analyses with exclusions

Exclusion of diabetes mellitus at baseline†	10,507	1.50	1.22–1.84
Exclusion of hypertension at baseline†	7,936	1.34	1.00–1.80
Exclusion of individuals on antihypertensives (ACE inhibitors, β-blockers, or diuretics) at baseline†	9,111	1.47	1.17–1.85
Exclusion of CHD at baseline†	11,329	1.52	1.27–1.82
Exclusion of psychiatric or Parkinson medications at baseline†	11,017	1.43	1.19–1.72
Exclusion of HF cases from first 2 y of follow-up†	11,568	1.60	1.35–1.90

†For secondary analyses, all of the above covariates were adjusted for except the stratified covariates.

ACE indicates angiotensin-converting enzyme; CHD, coronary heart disease; HF, heart failure.
study of elderly Dutch subjects from Rotterdam, the Netherlands, in which the strongest association between OH and incident HF was in the oldest participants (mean: 78 years; range: 71–99 years; HR: 1.32 [95% CI: 1.04–1.67]). In this same study, when age was divided into tertiles, no significant association between OH and incident HF was found in the 2 younger age groups (age ranges: 55–63 and 63–71 years). In sum, the differential associations between OH and HF in various age groups are difficult to compare across studies, given that the Malmo and ARIC studies are in younger cohorts than the Rotterdam Study. Yet, these divergent findings among age groups suggest that separate mechanisms may account for OH in the elderly compared with younger age groups. Another possibility is that the risk conferred by OH for incident HF may assume a U-shaped age distribution with younger and older adults at highest risk. In the elderly, OH has been associated with the presence of multiple comorbidities, vascular stiffness, and baroreflex dysfunction. We speculate that OH in younger, apparently healthy individuals may indicate subclinical cardiac dysfunction and/or vascular stiffness related to atherosclerotic disease. In both elderly and young, OH has been associated with increased mortality risk.

Both the Malmo and Rotterdam studies are in predominantly white populations, whereas our study has both white and black participants. As such, we could evaluate effect modification by race in our study. When stratified by race and sex, we observed that the HR associating OH and incident HF was lowest in white men and highest in black men, although the differences noted between race and sex groups were not statistically significant and CIs overlapped substantially. In addition, the association between OH and incident HF was not statistically significant in black men, which can be partly attributed to a smaller subgroup sample size.

Our main study limitations were the definitions of prevalent and incident HF. At baseline examination, no specific question regarding a previous HF diagnosis was asked of participants. As a result, criteria of self-reported treatment for HF and the Gothenburg HF criteria were used as proxies. To address potential prevalent HF cases not identified at enrollment, we performed a secondary analysis, as discussed previously. With regard to the definition of incident HF, because HF was not a formalized outcome when the ARIC Study was initiated, HF diagnostic codes were used to define the outcome without physician review for validation. This may have resulted in underascertainment of less severe cases of HF, because only hospital and death certificate codes were used to define this outcome, although ICD-9 code 428 and ICD-10 code I50 are specific and are the most frequently documented HF codes. Another limitation is the lack of echocardiographic study results to define HF as systolic or diastolic. However, similar readmission and mortality rates have been found in HF patients with ejection fractions of >40% compared with ejection fractions of <40%. Another limitation was that we were unable to evaluate OH at follow-up visits, because OH measures were only available from the baseline examination. Finally, hypertension was defined either through multiple measurements taken at the baseline visit or by report of taking antihypertensive medica-

Perspectives

Implications from our study are that OH appears to be associated with incident HF, which is somewhat attenuated with the exclusion of participants with hypertension. We found a stronger association between OH and HF in younger adults compared with older adults. Given our findings, we speculate that OH preceding HF may be a marker of early subclinical atherosclerosis that is facilitated by hypertension and potentially by other risk factors to contribute to HF development.

Acknowledgments

We thank all of the ARIC Study staff and study participants for their valuable contributions.

Sources of Funding

The Atherosclerosis Risk in Communities Study is carried out as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). N.F. receives funding from AHA 0675001N. LL. receives support from NIH grant UL1RR025747.

Disclosures

None.

References

Orthostatic Hypotension as a Risk Factor for Incident Heart Failure: The Atherosclerosis Risk in Communities Study

Christine D. Jones, Laura Loehr, Nora Franceschini, Wayne D. Rosamond, Patricia P. Chang, Eyal Shahar, David J. Couper and Kathryn M. Rose

Hypertension. 2012;59:913-918; originally published online March 19, 2012;
doi: 10.1161/HYPERTENSIONAHA.111.188151

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/59/5/913

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/