Microdialysis of Prostaglandins, Thromboxane, and Other Eicosanoids: Recall Past Knowledge

To the Editor:

Hansen et al reported that exercise training alters the balance between prostacyclin and thromboxane, as measured in skeletal muscle microdialysis (MD) samples of essential hypertension patients. Muscle MD prostacyclin and thromboxane concentrations measured by Hansen et al by ELISA are several orders of magnitude higher than their concentrations in plasma and muscle MD samples, as measured by us by gas chromatography-tandem mass spectrometry (Figure). Differences in the MD techniques may have contributed to this deviation. However, in consideration of our knowledge in the eicosanoids research area acquired over the past decades, 2 major methodologic shortcomings are more likely to have led to the discrepancy. First, primary eicosanoids are not suitable as biomarkers of in vivo eicosanoid synthesis because of abundant ex vivo formation. For example, thromboxane can be released from activated platelets during sampling. Prostacyclin and thromboxane synthesis is best assessed by measuring their dehydro and/or dinor metabolites, preferentially in urine. Second, commercially available ELISAs for eicosanoids are artifact prone and lack specificity. In essential hypertension, prostacyclin and thromboxane synthesis is not altered compared with normotension as assessed by gas chromatography-tandem mass spectrometry measurement of their major urinary dinor metabolites. In healthy humans, the same methodology revealed that acute physical exercise shifts the prostacyclin/thromboxane ratio in favor of dilatation. This finding supports the observation by Hansen et al that acute exercise increases prostacyclin and decreases thromboxane muscle MD concentrations after regular physical training in essential hypertension patients. Yet, chronic training halved prostacyclin and thromboxane MD concentration while leaving prostacyclin and thromboxane synthase expression unchanged. These opposite observations are difficult to reconcile and may suggest methodologic shortcomings in the MD techniques may have contributed to this deviation.

Sources of Funding

The Commission of the European Communities supported the project (Collaborative Projects ADAPT, Contract No. HEALTH-F2-2008-201100).

Disclosures

None.


Figure. Chromatograms from the gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis of endogenous prostacyclin (6-keto-PGF1α), thromboxane (TXB2), prostaglandin (PG) E2 and D2, and the externally added internal standard tetradeutero-6-keto-PGF1α (500 pg/mL) in microdialysis (MD) samples (20 μL) of skeletal muscle. MD was performed in an untreated obese subject with hypertension using CMA MD 107 pumps (2 μL/min, Ringer solution) and CMA 60 MD catheters with a polyarylethersulfone membrane (cutoff, 20 kDa) from CMA/MD (Stockholm, Sweden). The concentration of 6-keto-PGF1α, TXB2, PGE2, and PGD2 in concomitantly obtained MD samples (20 μL) of adipose tissue of the same subject was 1, 21, 25, and 6 pg/mL, respectively.

URL: http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.112.191908

Hypertension is available at http://hyper.ahajournals.org
Microdialysis of Prostaglandins, Thromboxane, and Other Eicosanoids: Recall Past Knowledge
Dimitrios Tsikas, Alexander A. Zoerner, Sven Haufe, Stefan Engeli, Dirk O. Stichtenoth and Jens Jordan

Hypertension. 2012;59:e39; originally published online March 5, 2012;
doi: 10.1161/HYPERTENSIONAHA.112.191908
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/59/5/e39

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/