Molecular Biology of Adrenergic Receptors in the Rat and Frog Central Nervous System

MARC G. CARON, L.M. FREDRIK LEEB-LUNDBERG, CATHERINE D. STRADER, KENNETH E.J. DICKINSON, VIRGINIA M. PICKEL, TONG JOH, AND ROBERT J. LEFKOWITZ

SUMMARY Recent developments in the characterization of the adrenergic receptors have led to the identification and purification of the binding subunits of the various catecholamine receptors. β-Adrenergic receptors have been identified in a wide variety of tissues by photoaffinity labeling with the antagonist [125I]p-azidobenzylcrazolol and have been purified to apparent homogeneity from several of these tissues. Thus, β1- and β2-adrenergic receptor binding sites appear to reside on peptides with molecular weights of 60,000 to 65,000. The α2-adrenergic receptor binding subunit has been identified in several peripheral tissues by photoaffinity labeling with a newly developed probe (4-amino-6,7-dimethoxy-2-[4(5-[125I]-ido-4-azidophenyl)pentanoyl]-1-piperazinyl]-quinazoline, or [125I]APDQ). This binding site resides on a peptide with a molecular weight of 80,000. These techniques have been applied to the elucidation of the binding subunit structure of these receptors in the rat central nervous system with the result that α1, β1-, and β2-adrenergic binding sites appear to reside on peptides of similar molecular weight to those identified in peripheral tissues (i.e., 60,000–65,000 and 80,000). Using immunocytochemical techniques with antibodies raised to the frog erythrocyte, β2-adrenergic receptors were identified at the light microscopic level in regions of the rat and frog brain previously found by ligand binding and autoradiography to be richest in β-adrenergic receptors. At the electron microscopic level, β-receptor immunoreactivity was found throughout dendritic processes with local accumulations at certain postsynaptic sites. This finding is consistent with the idea that the density of the receptors might be significantly increased at postsynaptic junctions of adrenergic neurons. (Hypertension 6 (Suppl II): 11-22—11-27, 1984)

KEY WORDS • photoaffinity probes • β-adrenergic receptor antibodies • affinity chromatography

URING the last decade considerable progress has been made in our understanding of the mechanisms by which hormones and neurotransmitters act through specific receptors to elicit biochemical and physiological responses in their target tissues. Many of these data have come as a result of the development of ligand binding techniques. These techniques have permitted correlation of the pharmacological properties of these receptors with the properties of the biochemical or physiological responses elicited by these hormones or neurotransmitters. In the adrenergic systems, the properties of β1- and β2-adrenergic receptor subtypes have been found to correlate well with the ability of catecholamines to stimulate adenylate cyclase in numerous tissues.1, 2 Binding of ligands to the α2-adrenergic receptor has been shown to correlate with the ability of catecholamines to inhibit stimulation of adenylate cyclase in certain tissues.3, 4 Binding of ligands to α1-adrenergic receptors in liver and vascular smooth muscle has been shown to correlate with the physiological effects of catecholamines on these tissues. The exact biochemical mechanisms involved in the signal transfer for this receptor, however, have not been entirely elucidated, although changes in cellular calcium and membrane phospholipid metabolism
have been implicated. Because these various receptor subtypes all bind the same catecholamines, the question of whether α- and β-adrenergic receptors are structurally related molecules has been of long-standing interest in the field of adrenergic pharmacology. Until recently, however, the molecular characteristics of these receptors had not been examined.

Several approaches lend themselves to the biochemical characterization of receptors. Because receptors bind ligands with a high degree of specificity and selectivity, they represent ideal proteins to be purified by affinity chromatography. Moreover, because of this specificity and high affinity of binding, specific affinity and photoaffinity probes can be designed by which the receptors can be covalently tagged and identified. Finally, the availability of purified preparations of receptor should allow the development of antibodies against the purified proteins for use in the further characterization of the receptors.

In fact, these approaches have proved successful in the characterization of the adrenergic receptors from various sources. Affinity chromatography procedures for the purification of α₁, β₁, α₂, and β₂-adrenergic receptors have been reported. With these procedures the β-adrenergic receptor from several tissues has been purified to apparent homogeneity. Similarly, purification of the α₁-adrenergic receptor from rat liver plasma membranes also has been reported with affinity chromatography. Moreover, high-affinity, high-specific-radioactivity, photoaffinity probes specific for α₁- and β₁-adrenergic receptors have been developed. The availability of purified β-adrenergic receptor preparations has led recently to the development of antibodies against the frog erythrocyte β-adrenergic receptor. These results underscore the feasibility of using the various approaches just described in the characterization of the various receptors for catecholamines.

Although these procedures have been developed for the characterization of the various catecholamine receptors, the original studies were done almost exclusively with peripheral tissues. Very little information is actually available on the molecular characteristics of these receptors in the central nervous system. In this paper we will attempt to compare the subunit structure of α₁- and β₁-adrenergic receptors of the brain with that of peripheral tissues as revealed by photoaffinity labeling. In addition, we will show that by using anti-β₁-adrenergic receptor antibodies and immunocytochemistry, the β₁-adrenergic receptor of the brain can be localized in postsynaptic clusters.

Identification of Adrenergic Receptors in Rat Brain by Photoaffinity Labeling

Visualization of receptors for hormones and neurotransmitters in tissue or crude membrane preparations is a complex problem as receptors are present in the plasma membrane in very low concentration. Thus, for a potential receptor probe to be usable it should: (1) have high affinity and selectivity for the receptor site, (2) be labeled to high-specific radioactivity (preferably with iodine), and (3) have a suitable chemically reactive group capable of incorporating into a polypeptide chain. The photoaffinity probes that have been developed recently for the labeling of α₁- and β₁-adrenergic receptors all possess these properties. Thus, it has become possible to identify receptors in crude membrane preparations even in the absence of any purification of the receptors themselves.

In the central nervous system, the four subtypes of receptors for catecholamines have been demonstrated by ligand binding and autoradiography. Little information is available, however, about the molecular structures of these receptors. Thus, we have used the α₁- and β₁-adrenergic photoaffinity probes developed in our laboratories: 4-amino-6,7-dimethoxy-2-[4(5-[125I]-iodo-4-azidophenyl] pentanoyl]-1-piperazinyl] quinazoline, or [125I]APDQ, and [125I]p-azidobenzylcarazolol, or [125I]pABC, to attempt to probe the structure of these receptors in the brain.

Labeling of the β₁-Adrenergic Receptors

Membranes from rat cerebellum and cortex were prepared in the following manner. Brains were removed and bathed in ice-cold 0.32 M sucrose, 1 mM EDTA. Cerebellum and cerebral cortex were dissected out and homogenized in 20 volumes of ice-cold 0.32 M sucrose, 1 mM EDTA in a glass teflon homogenizer. The homogenate was centrifuged at 500 g for 10 minutes at 0°C to 4°C (Sorvall SS-34 rotor, Ivan Sorvall, Inc., Norwalk, CT). The supernatant was recentrifuged at 12,000 g for 20 minutes. The pellet obtained was discarded and the supernatant centrifuged at 158,000 g for 45 minutes (Beckman Ti-45; Beckman Instruments, Fullerton, CA). The resulting pellet (membrane fraction) was washed twice by centrifugation at 40,000 g for 15 minutes with 150 mM NaCl, 5 mM EDTA, 50 mM Tris-hydrochloride (pH 7.5), resuspended in the same buffer, and stored at −80°C until used.

Membranes (2–3 mg of protein; equivalent to 400–600 fmol of β₁-adrenergic receptor) were incubated in 50-ml polycarbonate tubes in a total volume of 25 ml (16–24 pM receptor concentration) for 90 minutes at 25°C with 50 to 100 pM [125I]pABC under dim light in the presence and absence of 10 μM alpenrol. The membranes were washed by centrifugation at 40,000 g for 15 minutes in cold incubation buffer that contained 0.5% bovine serum albumin (essentially fatty-acid free), resuspended in 15 ml of bovine-serum-albumin-free buffer, and photolyzed. Labeled membranes were dissolved in 10% sodium dodecyl sulfate, 10% glycerol, 5% β-mercaptoethanol, 25 mM Tris-hydrochloride (pH 6.8) and subjected to sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) as described by Laemmli. After the electrophoresis the gels were dried and exposed at −70°C for 1 to 3 days with Kodak XAR film (Kodak, Rochester, N.Y.) with intensifying screens (Lightning Plus; du Pont Co., Wilmington, DE); the films were developed manually according to Kodak instructions.
As shown in Figure 1, when a microsomal preparation of either rat cerebellum or cerebral cortex was incubated with the antagonist [125I]pABC a peptide with a molecular weight of 60,000 was labeled, as revealed by SDS-PAGE autoradiography of the membrane samples. The covalent labeling of this band was blocked by the presence of 10 μM alprenolol in the membrane incubation. Because the cerebellum contains almost exclusively β2-adrenergic receptors and cerebral cortex contains predominantly β1-receptors, it is reasonable to suggest that the peptides labeled by [125I]pABC represent respectively the β2- and β1-adrenergic receptors in these two regions of the brain. The peptides labeled in the brain by the photoaffinity probe [125I]pABC seem to have molecular weights similar to the β-adrenergic receptor peptides identified or purified from peripheral tissues. Recent studies have shown that the cardiac β1-adrenergic receptor binding site of many species (including humans) resides on a peptide with a molecular weight of 62,000, while the β2-adrenergic receptor from mammalian lung has been characterized as a peptide with a molecular weight of 64,000. Determination of the extent of homology among the receptor peptides from different tissues or from the two different subtypes will have to await further characterization of these proteins.

Labeling of the α1-Adrenergic Receptor

Membranes were prepared as described in the previous section. Membranes (2–3 mg of protein, 400–600 fmol of total receptor) were then incubated for 90 minutes at 25°C with 50 to 100 pM [125I]APDQ in a total volume of 25 ml in the dark alone or with prazosin 10 μM; phentolamine, 10 μM; yohimbine, 10 μM; (−)epinephrine, 30 μM; (+)epinephrine, 30 μM; (−)norepinephrine, 30 μM; or (−)isoproterenol 30 μM, washed, and photolyzed as described previously. Other conditions were as described in the previous section.

As shown in Figure 2, incubation of a cerebral cortex microsomal preparation that is rich in α1-adrenergic receptors with the α1-adrenergic photoaffinity probe [125I]APDQ leads to the specific incorporation of the labeled ligand into a major peptide with a molec-
ular weight of 79,000. As can be seen in Figure 2 incorporation of this high-affinity probe also can be observed in lower-molecular-weight peptides (54,000 and 42,000); however, only the peptide with a molecular weight of 79,000 was labeled with the appropriate specificity. Thus, at 0.1 μM concentrations, the α₁-selective antagonist prazosin was much more potent than was the α₁-selective agent yohimbine in blocking covalent incorporation of [125I]APDQ. (—)Epinephrine and (—)norepinephrine were equally effective at 30 μM but (—)isoproterenol was ineffective. The (+) isomer of epinephrine was slightly less potent than its (—)isomer, as expected for an α₁-adrenergic receptor. A similar peptide (M₀ = 80,000) has been identified by photoaffinity labeling of rat liver plasma membrane as well as of several other tissues that contain α₁-adrenergic receptors (Dickinson and Leeb-Lundberg, unpublished observations). Recently, Kunos et al. have reported the identification of a peptide with a molecular weight of 80,000 with the properties of an α₁-adrenergic binding site by covalently labeling rat liver plasma membranes with the alkylating agent [14C]-phenoxybenzamine. In this study, another peptide with a molecular weight of 58,000 also was labeled specifically but was thought to represent a proteolytically generated fragment from the larger receptor peptide. These data agree with our own findings in rat liver with [125I]APDQ where similar lower-molecular-weight peptides could be evidenced. These peptides, which still contain an intact ligand binding site, may be similar to the peptide (M₀ = 59,000) purified by Graham et al. from rat liver membranes with affinity chromatography.

Immunocytochemical Localization of β-Adrenergic Receptors

As mentioned previously the presence of β-adrenergic receptors in various regions of the brain was documented originally by ligand binding studies. Palacios and Kuhar later confirmed and extended these findings by performing light microscopic autoradiographic localization of these receptors with radiolabeled antagonists; however, these techniques are of limited resolution and can only be used to map the regional distribution of these receptors in the brain. Although numerous studies that used biochemical fractionation techniques or selective neurotoxins have suggested that β-adrenergic receptors in the brain may be associated with postsynaptic neurons (reviewed in Strader et al.), it previously has not been possible to test this hypothesis directly.

The availability of antibodies capable of specifically recognizing the β-adrenergic receptor has allowed the examination of its morphological localization. Immunocytochemical localization in frog and rat brain with the antibodies and secondary peroxidase-antiperoxidase staining revealed immunoreactivity in the cerebellum, hippocampus, and neostriatum, regions that have been shown by ligand binding or autoradiography to be the areas where the β-receptors are most concentrated. No labeling was detected in brain sections incubated with receptor-adsorbed antiserum or with preimmune serum. Moreover, in laminated regions of the cerebellar cortex, receptor immunoreactivity was localized in the outer molecular layer with concentrations in distal regions of Purkinje cell dendrites and dendritic spines but not in cell bodies. Thus, at the light microscopic level, the distribution of β-adrenergic receptor immunoreactivity was the same as the localization of β-adrenergic receptors documented previously by other techniques.

To determine the localization of the receptors at a higher resolution, the specific immunoreactivity of the dendrites was examined at the electron microscopic level. Brain sections were prepared as described in Strader et al. Adjacent sections were incubated at 4°C for 24 hours with antiserum to the receptor at a 1:100 dilution or with antiserum absorbed with partially purified receptor. The sections were then washed and treated sequentially with a 1:50 dilution of goat antirabbit immunoglobulin, a 1:100 dilution of peroxidase-antiperoxidase, and 3,3'-diaminobenzidine-hydrogen peroxide. Samples were prepared for electron microscopy and examined with a Philips 201 electron microscope (Philips Co., Gildelaminfabriken-Eindhoven, The Netherlands). The results are taken from Strader et al. Figure 3 shows sections of frog hippocampus and rat cerebellum. In frog hippocampus (Figure 3A) β-adrenergic receptor immunoreactivity was observed through the cytoplasm of the cell and on the cell membrane. The highest concentration of receptor was located on regions of the membrane directly opposite the synaptic cleft (identified by the characteristic structure of presynaptic vesicles). In rat cerebellum (Figure 3B) a section of a Purkinje cell dendrite also revealed accumulations of receptor immunoreactivity in areas of synaptic contact. In larger fields the distribution of these postsynaptic clusters of receptor immunoreactivity was comparable to the distribution of specific catecholaminergic nerve terminals, as assessed by the immunolocalization of tyrosine hydroxylase. Thus, in brain, β-adrenergic receptors appear to be clustered at the postsynaptic junctions of adrenergic neurons. This finding represents the first demonstration of the localization of the β-adrenergic receptor at the high resolution afforded by the electron microscope.

Discussion

Receptors for catecholamines are almost ubiquitous in the body as amenability to catecholamines can be demonstrated in virtually every tissue. Stimulation or blockade of these receptors is important in the therapy of many prevalent human illnesses. Thus, the mechanisms by which these receptors mediate their effects is of primary interest. To elucidate the complete mechanisms of action of these hormones/neurotransmitters, however, it will be essential eventually to characterize biochemically the receptors and their effector systems. As reviewed in this paper, methods are now becoming
Figure 3. Electron microscopic × 20,000 immunocytochemical localization of specific immunoreactivity to the β-adrenergic receptor in dendrites. A. Frog hippocampus. B. Rat cerebellum. Arrows indicate peroxidase-reaction product accumulation at postsynaptic sites. t = terminal; bars = 1.00 μm.

available to accomplish this endeavor for the various catecholamine receptors. Affinity chromatography and photoaffinity-labeling techniques have been developed for α- and β-adrenergic receptors,20 and β1-, and β2-, as well as α1-adrenergic receptors have been purified to apparent homogeneity.10-14

As reported in this paper, with the technique of photoaffinity labeling it appears that β1- and β2-adrenergic receptor binding sites in the central nervous system reside on peptides of molecular weight similar to those peptides that have been identified or purified from peripheral tissues. Whether these peptides represent products from the same gene cannot be determined at this time; however, a recent study comparing mammalian peripheral β1- and β2-receptors by peptide mapping of photoaffinity-labeled peptides suggest that β1- and β2-peptides, while having similar molecular weights, show significant differences.35

The α1-adrenergic receptor of the cerebral cortex also appears to reside on a peptide of molecular weight (80,000) similar to that from peripheral tissues, as evidenced by photoaffinity labeling of α1-adrenergic receptors. In both brain and peripheral tissues α1- and β-adrenergic receptors appear to reside on peptides of completely different molecular weights (62,000–64,000 versus 80,000). Whether these α1 and β-adrenergic receptors show any degree of homology will have to await further structural characterization of the purified proteins.

As reviewed in this paper, the availability of an antibody to the frog erythrocyte β2-adrenergic receptor has permitted immunocytochemical localization of β-receptors in the brain. It has been demonstrated in both frog and rat brain that β-adrenergic receptors are clustered at the postsynaptic junctions of adrenergic neurons.

References
ADRENERGIC RECEPTORS IN THE CNS/Caron et al.

Molecular biology of adrenergic receptors in the rat and frog central nervous system.
M G Caron, L M Leeb-Lundberg, C D Strader, K E Dickinson, V M Pickel, T Joh and R J
Lefkowitz

Hypertension. 1984;6:II22
doi: 10.1161/01.HYP.6.5_Pt_2.II22

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/6/5_Pt_2/II22

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in
Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located, click
Request Permissions in the middle column of the Web page under Services. Further information about this
process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/