Changes in Brain α-Adrenergic Receptors After α-Methyldopa Administration to Spontaneously Hypertensive Rats

CURT R. FREED, CHING H. WANG, AND DAVID C. U’PRICHARD

SUMMARY The hypotensive action of methyldopa has been linked to production of the metabolites methyldopamine and methylnorepinephrine in brain. We have studied the effect of long-term (72 hour) intravenous infusions of methyldopa to awake restrained spontaneously hypertensive rats and normotensive Wistar-Kyoto control animals to look for differences in hypotensive effect, differences in concentrations of natural and α-methylated catecholamines, and differences in α1- and α2-adrenergic receptor populations. Results described here indicate that hypertensive rats have a greater reduction in blood pressure and a larger increase in hypothalamic and brain stem methylnorepinephrine concentrations than do the normotensive animals. The methylnorepinephrine concentration reached a plateau value in hypothalamus in both strains while pons and medulla showed progressive, dose-related increases in concentration. These regional and strain differences in the metabolism of α-methyldopa suggest that the production of methylnorepinephrine in brain stem nuclei is most correlated with the hypotensive action of methyldopa. α1-Agonist binding (p-amino-clonidine) declined in both hypothalamus and brain stem, and the fall was greater in hypertensive than in normotensive rats. α2-Adrenergic receptor binding (prazosin) was increased, again more in hypertensive than in normotensive rats. The down regulation of α2-adrenergic receptors and the up regulation of α1-adrenergic receptors are compatible with increased α2-adrenergic agonist presynaptic inhibition of catecholamine release with resultant postsynaptic α1-adrenergic receptor supersensitivity. Spontaneously hypertensive rats showed greater methylnorepinephrine production, larger up regulation of α1-adrenergic receptors, and greater down regulation of α2-adrenergic receptors than did the normotensive animals; these changes may be physiological markers for the greater antisympathetic action of methyldopa in hypertensive animals. (Hypertension 6 (Suppl II): 11-34—11-39, 1984)

KEY WORDS • spontaneously hypertensive rats • α-methyldopa • α1- and α2-adrenergic receptors • hypertension • sympathetic nervous system

METHYLDOPA is believed to lower blood pressure by being metabolized in brain to one or more α1-agonists. Three metabolites — methyldopamine, methylnorepinephrine, and methylepinephrine — have been proposed as the important agonist, although methylnorepinephrine is considered by most to be the active metabolite. Regardless of which of these compounds is the critical one, the presence of excess α1 agonist in brain might well be expected to down regulate the number of α2-adrenergic receptors. This phenomenon has been observed by us and others. If the mechanism for blood pressure reduction is related to α1 agonist formation, then dose-related reductions in blood pressure are likely to be associated with dose-related changes in α1 adrenergic receptor number. Both α1 and α2-adrenergic receptors have been described pre- and postsynaptically. A simple model based on studies of peripheral tissues such as the isolated cat spleen suggests that stimulation of presynaptic α2-adrenergic receptors inhibits the release of transmitter. The reduction in transmitter release leads to reduced stimulation of the postsynaptic α1-adrenergic receptor. On a long-term basis, this lowered stimulation leads to increases in α1-adrenergic receptor number. Similar α1-adrenergic receptor supersensitivity has been produced with central sympathectomy using 6-hydroxydopamine or median forebrain bundle lesions.
Biochemical differences between spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) have been shown for catecholamine synthetic enzymes, catecholamine concentrations, and α-adrenergic receptor populations. Hypertensive animals also have shown greater reductions in blood pressure to a given dose of an antihypertensive drug. Although the hypertensive animals have been shown to be different from controls in these neurochemical and pharmacological parameters, the neurochemical differences have not been correlated with differences in drug responsiveness.

We have studied the hypotensive response of WKY and SHR to long-term infusions of α-methyldopa. We have compared the concentrations of dopamine and norepinephrine and their α-methylated analogues in multiple brain regions of the animals and also measured changes in α1 and α2-adrenergic receptors in these brain areas to look for systematic differences in the adrenergic systems of the two strains that might explain the difference in pharmacological effect of methyldopa.

Methods

Male WKY and SHR, 12 to 16 weeks of age, received doses of methyldopa ranging from 0 to 20 mg/kg/hr together with the peripheral decarboxylase inhibitor carbidopa, 2.5 mg/kg/hr. Animals were awake in restraining cages and drug infusions were via the jugular vein. Mean arterial blood pressure was monitored with a cannula in the descending aorta as previously described. After 72 hours of drug infusion, animals were sacrificed by decapitation and the brain hemisected. One half of the brain was further dissected and assayed for dopamine, norepinephrine, methyldopa, methylnorepinephrine, and methylnorepinephrine in the hypothalamus, pons, and medulla by high-performance liquid chromatography with electrochemical detection. Brain stem sections were defined by the boundaries of the fourth ventricle. The anterior brain stem (pons) was dissected from the rostral tip of the ventricle to the cerebellar peduncle. The posterior brain stem section (medulla) extended from the cerebellar peduncle to the caudal tip of the fourth ventricle. The other half of the brain was divided into two blocks that corresponded to the thalamus-hypothalamus and pons-medulla regions; these regions were assayed with ³H-prazosin for α1-adrenergic receptors. 22 α1 agonist (high-affinity state) and α2-antagonist (low-affinity state) binding were determined with the tritiated ligands p-aminoclonidine and rauwolscine respectively. Assays were performed with a single subsaturating concentration of ligand; however, previous studies in male Sprague-Dawley rats with competition curves over a full range of ligand concentrations showed that methyldopa treatment led to changes in adrenergic receptor number, not affinity. Table 1 shows the conditions used for the receptor assays.

Changes in blood pressure, catecholamine concentrations, and adrenergic receptor densities were compared for the two strains using a Student’s t-test for the baseline values and two-way analysis of variance (ANOVA) for the dose-related changes seen after methyldopa infusion.

Results

The hypertensive animals used in this study had mean blood pressures of 125 mm Hg; the control animals had blood pressure values of 100 mm Hg. Although the SHR had higher blood pressures at the time of arterial catheter placement (approximately 150 mm Hg), blood pressure dropped to the mean value 24 hours after the SHR were placed in the restraining cages. The WKY control animals did not show this change in mean blood pressure between the time of catheter placement and the beginning of the drug infusions. Hypertensive animals also had a greater fall in blood pressure after methyldopa infusion; however, as shown in Figure 1, the lowest blood pressure achieved

![Figure 1. Reduction in mean blood pressure in spontaneously hypertensive rats (closed circles) and normotensive Wistar-Kyoto rats (open circles) after 72-hour intravenous infusion of methyldopa. Each point is the mean and se of at least five animals.](image-url)

<table>
<thead>
<tr>
<th>Adrenergic Receptor</th>
<th>Ligand</th>
<th>³H-Activity</th>
<th>Conc</th>
<th>Blank</th>
<th>Buffer</th>
<th>Temp (°C)</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-1</td>
<td>Prazosin</td>
<td>33 Ci/mMol</td>
<td>0.3 nM</td>
<td>100 μM</td>
<td>NE Tris-HCl</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>α-2(L)</td>
<td>Rauwolscine</td>
<td>80 Ci/mMol</td>
<td>2.5 nM</td>
<td>100 μM</td>
<td>NE Na-K-PO₄</td>
<td>4</td>
<td>90</td>
</tr>
<tr>
<td>α-2(H)</td>
<td>p-Amino -</td>
<td>52 Ci/mMol</td>
<td>0.5 nM</td>
<td>10 μM</td>
<td>NE Tris-HCl</td>
<td>25</td>
<td>40*</td>
</tr>
</tbody>
</table>

*Membranes were preincubated for 30 minutes at 25 °C.

L = low-affinity state; H = high-affinity state; NE = norepinephrine.
for the two strains was similar at the maximum dose of methyldopa tested. The concentrations of methyldopa were the same in both strains at each dose tested and there were no regional differences in methyldopa concentrations (data not shown). Figure 2 presents the changes in catecholamine concentrations seen in the pons after increasing doses of methyldopa. There was a progressive depletion of norepinephrine and dopamine and dose-related increases in methyldopamine and methylnorepinephrine. Furthermore, the increase in methylnorepinephrine was greater in the hypertensive than in the normotensive animals when data were grouped and analyzed by two-way ANOVA. These results were similar to those seen in the medulla but contrast with those measured in the hypothalamus. As demonstrated in Figure 3, in the hypothalamus, methyldopa infusion led to a significant decrease in norepinephrine concentrations in both rat strains that was significantly greater in the hypertensive rats (p < 0.02 by two-way ANOVA). Each point is the mean and SEM of at least five animals.

![Figure 2](http://hyper.ahajournals.org/)

Figure 2. Catecholamine concentrations in the pons of normotensive rats (WKY) and spontaneously hypertensive rats (SHR) after 72-hour infusion of methyldopa. There is a dose-related increase in methylnorepinephrine concentration in both rat strains that is significantly greater in the hypertensive rats (p < 0.02 by two-way ANOVA). Each point is the mean and SEM of at least five animals.

![Figure 3](http://hyper.ahajournals.org/)

Figure 3. Catecholamine concentrations in the hypothalamus of normotensive rats (WKY) and spontaneously hypertensive rats (SHR) after methyldopa infusion. There is a significant difference in the control concentration of norepinephrine in the two strains (p < 0.03; SHR less than WKY by Students t-test). There is also a small but significantly higher concentration of methylnorepinephrine in the hypertensive rats when all doses are taken into account with two-way ANOVA (p < 0.05). All points are the mean and SEM of at least five animals.
ynorepinephrine concentration reached a maximum at a methyldopa dose of 5 mg/kg/hour. The hypertensive rats did have a small but significantly greater concentration of methylnorepinephrine when all drug doses were taken into account by two-way ANOVA. Hypertensive animals not receiving methyldopa had a lower hypothalamic norepinephrine concentration than did controls.

The α₁ and α₂-adrenergic receptor changes in the thalamus-hypothalamus and pons-medulla regions are shown in Figures 4 and 5. α₂ Agonist binding determined by p-aminoclonidine was reduced significantly more in hypertensive rats, which suggests that the higher concentrations of methylnorepinephrine in the hypertensive rats may be linked to larger reductions in α₂-adrenergic receptor high-affinity states. Although the SHR showed apparently fewer α₂-adrenergic receptors in the high-affinity state before methyldopa, these differences were not significant. α₁ Antagonist binding measured with rauwolscine showed no significant change in either tissue area (data not shown).

To demonstrate that the reduction in α₁ agonist binding was not due to residual α-methylnorepinephrine present after membrane washing, we determined ¹H-p-aminoclonidine binding to cerebral cortex membranes which had been preincubated for 30 min at 37°C with 20 μM d,l-α-methylnorepinephrine. Instead of a decrease, this treatment led to a 25% and 40% increase in α₁ agonist binding in two replications of the experiment.

Changes in α₁-adrenergic receptors measured by prazosin binding showed that SHR had significantly greater increases in α₁-adrenergic receptors in both the hypothalamus and the pons-medulla regions than did the normotensive controls.

Discussion

These experiments indicate that SHR have a greater hypotensive response to a given dose of α-methyldopa than do normotensive animals. The hypertensive animals also produced more methylnorepinephrine and showed a greater change in α₂-adrenergic receptors in the hypothalamus and brain stem areas. An increase in binding of α₂-adrenergic receptors also was demonstrated, which was greater in SHR. The change in α₂-adrenergic receptors was a reduction in agonist bind-

Figure 4. α₂-adrenergic receptor changes in hypothalamus-thalamus and pons-medulla measured by agonist binding. Hypertensive animals (SHR; closed circles) have reduced α₂-adrenergic receptors compared with control animals (WKY; open circles) (p < 0.01, both regions by two-way ANOVA). Each point is the mean and SEM of four animals.

Figure 5. α₁-adrenergic receptor changes in the hypothalamus-thalamus and pons-medulla regions measured by prazosin binding. Two-way analysis of variance shows a greater increase in α₁-adrenergic receptors in hypertensive rats (SHR; closed circles) than in normotensive rats (WKY; open circles). (p < 0.01, both areas; n = four animals per experimental point.)
ing, not antagonist binding, which suggests that there was only a reduction in high-affinity states with no change in the total number of α_1-adrenergic receptors. It is unlikely that differences in residual agonist concentrations led to observed changes as membranes were washed and preincubated before α_1-adrenergic agonist receptor assays were performed. Furthermore, experiments using cerebral cortical membranes preincubated with α_2-methylnorepinephrine showed an increase rather than a decrease in α_2-adrenergic receptors. This somewhat surprising result has also been observed in the study of dopamine receptors. Striatal membranes preincubated with dopamine show an increase in 3H-dopamine binding.25,26

The down regulation of α_1 receptors (high-affinity state) was likely due to the presence of the α_1 agonist methylnorepinephrine. The fact that SHR have a greater production of this compound and a greater change in this receptor population supports this concept. Changes in agonist binding alone have been reported in the past and so are expected in this setting.27

Cantor et al. have reported that α_1-adrenergic receptor binding measured by WB-4101 is greater in hypothalamus of 16- to 20-week-old SHR compared with control animals and that there is no change in adrenergic receptor binding after treatment with clonidine.18 Although we did not see a difference in baseline hypothalamic α_1-adrenergic receptor binding with prazosin as the ligand, we did see an increase in receptor numbers after methyldopa infusion. Differences in ligand and in antihypertensive agent may account for the different observations.

We do not believe that the receptor changes are the cause of the hypotensive response but that they are a marker for the presence of increased α_1 agonist and decreased α_1 agonist activity. Animals were infused for 72 hours to allow receptor changes to take place. Following a methyldopa infusion, blood pressure fell maximally over a few hours and remained reduced. Although we have not studied the time course of the receptor changes, we doubt that it would parallel the hypotensive changes. We cannot say whether receptor changes modulate the hypotensive action of methyldopa. Because there is down regulation of α_1-receptor high-affinity states and up regulation of α_1-adrenergic receptors, these changes would tend to reduce the hypotensive efficacy of an α_1 agonist such as methylnorepinephrine. That methyldopa leads to persistent transmitter flow as indicated by an increase in α_1-adrenergic receptors supports this possi-

bility. Of course, α_1 agonist action at other sites such as presynaptic serotonin neurons also may play a role in reducing net sympathetic outflow.

We conclude that SHR differ from WKY in the degree to which they metabolize methyldopa to methylnorepinephrine in the hypothalamus and brain stem. They also show larger changes in α_1 and α_2-adrenergic receptors in response to this drug treatment. These exaggerated physiological responses may account for the greater hypotensive effect of α-methyldopa observed in hypertensive animals.

Acknowledgments

For technical advice and assistance we thank Jon Stolk, Ph.D., University of Maryland

References

4. Waldmeier P, Hedwall PR, Maître L. On the role of α-methyl-
dopamine in the antihypertensive effect of α-methyldopa.
Naunyn-Schmiedebergs Arch Pharmacol 1975;289:303-314
5. Freed CR, Quinero E, Murphy RC. Hypotension and hypo-
thalamic amine metabolism after long term α-methyldopa infu-
sions. Life Sci 1978;23:312-322
6. U’Prichard DC, Wang CH, Freed CR. Brain monoamine
receptor changes associated with catecholamine depletion
and hypotension during continuous α-methyldopa infus-
7. Goldberg MR, Tung CS, Robertson D. Methyldopa induces
reciprocal changes in cortical α-adrenergic receptor subtypes
(abstr.). Clin Res 1981;29:430A
8. Benthelsen S, Pettinger WA. A functional basis for classifi-
9. Fain JN, Garcia-Sainz JA. Role of phosphatidylinositol turn-
over in α-1 and of adenylate cyclase inhibition in α-2 effects of
catecholamines. Life Sci 1980;26:1183-1194
Biochem Pharmacol 1974;23:1793-1800
11. Starke K. α adrenoceptor subclassification. Rev Physiol Bio-
chem Pharmacol 1981;88:199-236
12. U’Prichard DC, Bechtel WD, Roush BM, Snyder SH. Multiple
apparent α-noradrenergic receptor binding sites in rat brain:
Effect of 6-hydroxydopamine. Mol Pharmacol 1979;16:47-60
13. U’Prichard DC, Reisine TD, Mason ST, Fibiger HC, Yama-
mura HI. Modulation of rat brain α and β adrenergic receptor
populations by lesion of the dorsal noradrenergic bundle. Brain
Res 1980;187:143-154
14. Nagaoka A, Lovenberg W. Regional changes in the activities
of aminergic biosynthetic enzymes in the brains of hyperten-
15. Versteeg DHG, Palkovits M, van der Gugten J, Wijnen
HLJM, Sneets GWM, de Jong W. The spontaneously hypo-
tensive rat: catecholamine levels in individual brain regions.
Prog Brain Res 1977;47:111-116
16. Saaavedra JM, Groebecker H, Axelrod J. Adrenaline forming
enzyme in brainstem: elevation in genetic and experimental
17. Renaud B, Joh TH, Reis DJ. An abnormal regulation of tyro-
sine hydroxylase restricted to one catecholamine nucleus in the
brain stem of spontaneously hypertensive rats. Brain Res
1979;173:164-167
18. Cantor EH, Abraham S, Spector S. Central neurotransmitter
19. Morris MJ, Devynck MA, Woodcock EA, Johnston CI,
Meyer P. Specific changes in hypothalamic α-adrenoceptors in
young spontaneously hypertensive rats. Hypertension 1981;3:
516-520
20. Freed CR, Asmus PA. Brain tissue and plasma assay of L-dopa
and α-methyldopa metabolites by high performance liquid
chromatography with electrochemical detection. J Neurochem
1979;32:163-168
21. Echizen H, Freed CR. Long term infusion of L-5-hydroxytry-
ptophan increases brain serotonin turnover and decreases blood
pressure in normotensive rats. J Pharmacol Exp Ther 1982;
220:579-584
22. Greengrass P, Brenner R. Binding characteristics of 3H-praz-
ozin to rat brain α-adrenergic receptors. Eur J Pharmacol
1979;55:323-326
23. Rouot BR, Snyder SH. 3H-orphanin fens dine: a novel li-
gand which binds with high affinity to α-adrenergic receptors.
Life Sci 1979;25:769-774
24. Perry BD, U’Prichard DC. 3H-Rauwolscine (α-yohimbine): a
specific antagonist radioligand for brain α-2 adrenergic recep-
25. Bacopoulos NG. High affinity stereospecific binding of 3H-
dopamine in rat brain: interaction with endogenous dopamine.
Biochem Phar 1981;30:2037-2040
26. Hanblik MM, Creese I. 3H-dopamine binding to rat striatal D-
2 and D-3 sites: enhancement by magnesium and inhibition by
guanine nucleotides and sodium. Life Sci 1982;30:1587-1595
27. Burns TW, Langley PE, Terry BE, Bylund DB. Studies on
desensitization of adrenergic receptors of human adipoocytes.
Metabolism 1982;31:288-293
28. Zandberg P, de Jong W. α-Methylnoradrenaline-induced hypo-
tension in the nucleus tractus solitarii of the rat: a localization
29. Conway EL, Louis WJ, Jarrott B. Endogenous and α-methyl-
cated catecholamines in anterior hypothalamic-preoptic and
medullary nuclei in rat brain after chronic α-methyldopa ad-
Changes in brain alpha-adrenergic receptors after alpha-methyldopa administration to spontaneously hypertensive rats.
C R Freed, C H Wang and D C U'Prichard

Hypertension. 1984;6:II34
doi: 10.1161/01.HYP.6.5_Pt_2.II34

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1984 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/6/5_Pt_2/II34

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/