Antihypertensive Metabolites of α-Methyldopa

DAVID ROBERTSON, CHE-SE TUNG, MICHAEL R. GOLDBERG, ALAN S. HOLLISTER, JOHN F. GERKENS, AND JOHN A. OATES

SUMMARY α-Methyldopa acts through a metabolite in the central nervous system. Of the three metabolites most prominently considered as potential mediators of α-methyldopa hypotension — α-methyldopamine, α-methylnorepinephrine (MNE), and α-methylepinephrine (ME) — ME is the most potent depressor agent following intravenous infusion into rats, following injection into the lateral ventricle, and following injection into the solitary tract nucleus (NTS). The depressor effect of ME in the NTS is attenuated as effectively by timolol as by yohimbine, while the combination of both timolol and yohimbine completely abolishes the pharmacological activity of ME in the NTS. ME is approximately eightfold more potent than MNE in the NTS and also has a greater susceptibility to timolol attenuation. (Hypertension 6 (Suppl II): II-45-II-50, 1984)

KEY WORDS • methyldopa • methylepinephrine • methylnorepinephrine • methyldopamine • CNS • blood pressure

There is a consensus that α-methyldopa exerts its antihypertensive effect through the actions of a metabolite within the central nervous system. There is less agreement about the identity of the principal active metabolite and the precise site of its action. Central dopa decarboxylase inhibition interferes with the depressor effect of α-methyldopa.1–3 This suggests that α-methyldopamine or one of its metabolites is critical for drug effect.

α-Methyldopamine is readily converted to α-methylnorepinephrine (MNE) in catecholaminergic neurons. For this reason, much attention has been focused on α-methyldopamine and MNE as potential mediators of the antihypertensive effect of α-methyldopa. When administered into the lateral cerebral ventricle of rats and cats, both α-methyldopamine and MNE lower blood pressure.4

Inhibition of dopamine-β-hydroxylase by FLA 63 (bis-4-methyl-1-homo-piperazinylthiocarbonyl disulfide) prevents the depressor effect of α-methyldopa.5,6 Furthermore, centrally active α-adrenergic blocking agents attenuate the hypotensive response of α-methyldopa more effectively than does the dopamine antagonist haloperidol.1–6 These observations support a role for a more distal metabolite than α-methyldopamine mediating α-methyldopa action through an action on α-receptors.

Inasmuch as norepinephrine (NE) has long been appreciated as a neurotransmitter in the central nervous system, it was natural that MNE would be proposed as a central "false" transmitter that accumulates and displaces the endogenous neurotransmitter from critical sites. The hypothesis that MNE was the critical α-methyldopa metabolite seemed even firmer with recognition that MNE binds more readily than NE to α2-adrenergic receptors in some tissues, while binding to α1-adrenergic receptors less readily than NE.9

Not all data, however, supported this hypothesis. Following a single dose of α-methyldopa, the time course of brain MNE accumulation did not correlate well with the rate of development of hypotension.10 Freed and co-workers used deuterium-labelled α-methyldopa in the rat hypothalamus to estimate turnover rates of metabolites following a 24-hour infusion of nondeuterated α-methyldopa.11 Blood pressure reduction did not correlate with either MNE concentration or turnover. Although there was a correlation with α-methyldopamine concentration, the above data with dopamine-β-hydroxylase inhibition cast doubt on the importance of α-methyldopamine as the key metabolite.

The identification of epinephrine-containing neurons in brain stem sites previously implicated in blood pressure regulation requires that consideration be given to the hypothesis that the action of α-methyldopa might involve these neurons. Several interactions can be envisaged. If epinephrine-containing neurons were
by guest on May 31, 2017 http://hyper.ahajournals.org/ Downloaded from

arteries, Malik demonstrated that although ME inhibit-

stimulation, and (3) the immediate depressor effect of

agent could be retained by the heart and released on

infusion of ME could be attenuated and reversed by /3-
methyladrenaline, oxyephedrine, and methylcobefrin,
pound. Variously referred to as dihydroxyephedrine,

nephrine-containing neurons, its potency at epinephrine recep-
tors mediating depressor responses might be such as to effect a
drop in blood pressure (B). If, however, epinephrine levels were
depleted by the /3-methyladopa, and /3-methylephrine syn-
thesis was inadequate to replace the stimulation that epineph-
rine had been providing to an epinephrine receptor that mediati-
ed vasoconstriction, reduced effective epinephrine input would
occur (C). It should be noted that the mechanism depicted in (B)
presupposes that the neurotransmitter elicits vasodepression
while that in (C) presupposes that the neurotransmitter elicits
vasoconstriction.

functionally depressor in some sites (e.g., the solitary
tract nucleus, NTS), then the synthesis of an epineph-
rine analog such as /3-methylephrine (ME) could
lead to a reduction in blood pressure if it were more
potent than epinephrine (E) itself and if it were present
in significant concentrations. Such a situation is de-
picted in Figure 1B. Alternatively, if E-containing
neurons in some other site were functionally pressor,
then a reduction in endogenous E production could
also lead to blood pressure reduction if it were not
attended by a more than compensatory quantity of an
active "false" neurotransmitter. Such a situation is
depicted in Figure 1C. The role of E-containing neu-
rons in blood pressure control is considered elsewhere
in this volume.16

Because of these considerations, we have investi-
gated the pharmacology of the metabolite ME (Figure
2). There have been few previous studies of this com-
 pound. Various referred to as dihydroxyephedrine,
methyladrenaline, oxyphephrine, and methylcobefrin,
ME seemed to be less potent as a peripheral vasocon-
strictor than NE, but similar to E in vasodilator poten-
ty. 17-18 The studies of Muscholl19-21 indicated that: (1)
ME was synthesized in the adrenal gland following /3-
methyladopa administration, (2) after ME infusion, the
agent could be retained by the heart and released on
stimulation, and (3) the immediate depressor effect of
infused ME could be attenuated and reversed by /3-
adrenergic blockade. Using perfused rat mesenteric
arteries, Malik demonstrated that although ME inhibit-
ed responses to nerve stimulation, it did not inhibit the
effect of NE infusion.22

In order to study ME further, it was necessary to
consider the implications of its two asymmetric carbon
atoms, which yield four isomeric forms. Erythro-ME
already had been separated from ME-ME by earlier
investigators who noted that the former was consider-
ably more active. We resolved racemic erythro-ME
into its (+) and (-) isomers by fractional crystalliza-
tion.23

We next studied the capacities of the enantiomers and
racemic modifications of /3-methyldopamine, MNE, and ME to bind with adrenergic receptor sites of the
/3, /3, and /3 subtypes. This was done using radio-
ligand binding competition with the following respec-
tive compounds: tritiated prazosin, tritiated clonidine,
and tritiated dihydroalprenolol. Rat forebrain was the
tissue chosen for study because the sought adrenergic
subtypes had been shown to be present here by pre-
vious investigators.24 The methodology and results of
our investigations have been presented elsewhere in
detail.25

Ranking in order of potency in competing with pra-
zosin was (-)E > (-)NE > (-)erythro-MNE > (-)erythro-ME >
/3-methyldopamine. Thus both endogenous catecholamines competed better for presumed /3-binding sites than did any of the three /3-
methyladopa metabolites.

Ranking in order of potency in competing for triitial-
ed clonidine was (-)E > (-)erythro-MNE > (-)NE
= (-)erythro-ME > /3-methyldopamine. Both E and
MNE appeared to compete better for presumed /3-
binding sites than did NE and ME, which, in turn,
were more potent than /3-methyldopamine.

Ranking in order of potency in competing for tribit-
tated dihydroalprenolol was (-)erythro-ME >
(-)erythro-MNE > (-)E > (-)NE > /3-methyldopa-
mine. Thus ME appeared to be the most potent of the
compounds tested in binding putative /3-adrenergic re-
ceptor sites. It has been postulated that the /3-adrener-
getic blocking agents in forebrain are predominantly of
the /3 subtype, whereas those on human lymphocytes
are predominantly /3. We therefore assessed competi-
tion of these compounds for lymphocyte /3-adrenergic
blocking agents with 125-iodinated-hydroxysiproter-
eno1 as radioligand. Here ME was decidedly more
effective than E, NE, and MNE in competing for puta-
tive /3 sites.25

The binding characteristics of MNE and ME vis-
vis clonidine binding suggested that the former might
be more active at this site (although, of course, that
effect might be agonism or antagonism). We therefore
investigated a system previously well characterized as
being mediated by /32-adrenergic receptor sites: the
human platelet.

Human platelets were isolated from normal vol-
teers by differential centrifugation; aggregation
(nephelometry) and binding potency (using tritiated
yohimbine) were assessed. There was excellent agree-
ment between these parameters; MNE was perhaps
slightly more potent than ME in causing aggregation
and in competing for yohimbine binding sites, but the endogenous catecholamines clearly were more efficacious than either of these metabolites. We therefore would conclude that, if the central adrenergic blocking agents mediating hypotension were indistinguishable functionally from the platelet α₂-adrenergic receptor sites, then MNE would be equal to ME or slightly more potent in inducing a fall in blood pressure.

Before directly examining this question, we studied the cardiovascular effect of peripherally administered ME in rats. Over the dosage range 0.5 to 2.0 μg, ME as a bolus lowered mean arterial blood pressure by more than 25 mm Hg within 15 seconds (Figure 3). In contrast, the same dosage of MNE elicited a pressor response only. Heart rate responses tended to be opposite in direction to the absolute changes in blood pressure, consistent with baroreceptor reflex buffering.

Administration of ME, MNE, and E into the lateral cerebral ventricle (unilaterally) of the anesthetized rat elicited disparate effects. ME was the most potent depressor agent throughout the 5 to 20 µg dosage range during the first 20 minutes. The peak depressor response of ME was at 2 minutes, but the effect persisted beyond 40 minutes with all but the smallest dose. In striking contrast, the initial effect of MNE during the first 5 minutes after administration was pressor, followed by a prolonged but only modest depressor response. ME was far more potent than MNE. ME appeared to be 5 to 10 times more potent than MNE. Epinephrine seemed intermediate in potency but resembled ME more than MNE. It is noteworthy that the heart rate changes with both ME and MNE were more modest than those with E.

These data presented us with an interesting paradox. Two agents (ME and MNE) with roughly comparable effects in a well-characterized α₂-adrenergic-receptor system (the human platelet) had markedly different effects on blood pressure; ME was severalfold more potent in eliciting hypotension. Several explanations are possible in such a situation: (1) Differential diffusion to critical areas involved in cardiovascular regulation may be responsible. (2) There could be differential uptake and/or metabolism of the two compounds. (3) Real differences in pharmacological profile may be present.

Of these possibilities, the third seemed to be the most likely, and yet what could be the basis for such a difference in potency, in view of the roughly equivalent potency in the platelet α₂-adrenergic-blocking agent system? One explanation could be that in the case of ME a non-α₂-mechanism might contribute to the depressor effect in the NTS. To test the hypothesis that central β-adrenergic receptors somehow might be involved in α-methyldopa hypotension, we investigated the capacities of α₂-blockade and β-blockade to

Figure 2. The metabolic sequence leading to the synthesis of epinephrine. It can be seen that α-methyldopa may undergo a similar pattern of reactions to yield α-methylepinephrine.
Figure 3. The effect of intravenous catecholamine on blood pressure and heart rate in Sprague-Dawley rats. Epinephrine (E) yields an initial pressor response that resolves within 2 minutes. \(\alpha \)-Methylnorepinephrine (\(\alpha \)-MNE) yields a mild pressor response following intravenous administration. With \(\alpha \)-methyllepinephrine (\(\alpha \)-ME), however, the initial response is depressor and no pressor response appears at any point. Heart rate changes are essentially the inverse of the blood pressure changes. Left panel: \(n = 10 \), \(\blacktriangle \), (\(\pm \)) \(\alpha \)-MNE; \(n = 6 \), \(\bullet \bullet \), (\(\pm \)) E; \(n = 6 \), \(\bullet \bullet \bullet \), (\(\pm \)) \(\alpha \)-ME. Right panel: \(n = 10 \), \(\blacktriangle \), (\(\pm \)) \(\alpha \)-MNE; \(n = 6 \), \(\bullet \bullet \), (\(\pm \)) E; \(n = 6 \), \(\bullet \bullet \bullet \), (\(\pm \)) \(\alpha \)-ME.

attenuate the effects of NTS injections of E, MNE, and ME. Based on our studies of its central pharmacology,26,27 we selected yohimbine to achieve relatively selective \(\alpha \)\textsubscript{1}-blockade.25,26

Results of these studies are shown in Figure 5. It can be seen that \(\alpha \)\textsubscript{2}-blockade (yohimbine) attenuated the depressor response to all catecholamines. Our radioligand-binding data had suggested that the potency of \(\alpha \)-methyldopa metabolites at \(\beta \)-adrenergic receptors might be important in the action of these compounds.25 Furthermore, \(\beta \)-adrenergic-receptor (timolol) blockade was also efficacious against the catecholamines. These results suggest that \(\beta \)-adrenergic receptors play a role in mediating the depressor responses of catecholamines injected into the NTS and that ME has the capacity to stimulate beta adrenergic receptors. Other investigators have also identified \(\beta \)-adrenergic receptors in the NTS.28

That ME is the most potent depressor metabolite is suggestive of its importance in mediating the hypertensive effect of \(\alpha \)-methyldopa; however, it also must be present in critical vasomotor nuclei in sufficient concentrations to exert this effect. ME has been identified in rat hypothalamus in concentrations of 4.8 ng/g wet weight,28 yet it appears unlikely that ME is primarily synthesized by the enzyme phenyl-ethanolamine-N-methyltransferase.29-31 Presumably its synthesis occurs through the action of a still poorly characterized and possibly "nonspecific" methyltransferase.32 The modest quantity of ME heretofore detected following \(\alpha \)-methyldopa administration would need to be highly localized to be a major contributor to the antihypertensive effect of \(\alpha \)-methyldopa.

Conclusion

These studies describe the pharmacologic effects of metabolites of \(\alpha \)-methyldopa in one site known to be involved in the central regulation of arterial pressure. They do not, however, permit any inferences regarding the mechanism of action of \(\alpha \)-methyldopa. Other issues relevant to that mechanism include the extent to which sites and pathways other than those injected may mediate the central adrenergic regulation of peripheral resistance; the type of receptors that would mediate any action of those other sites; and the extent to which ME is actually biosynthesized, stored, and released by the neurons of interest.

Indeed, following the administration of \(\alpha \)-methyl-
dopa, the concentrations of ME in the forebrain, the hypothalamus, and brain stem of the rat are all below 10 ng/g. Certainly these amounts are far less than a stoichiometric replacement of the E depletion. This could represent a low level of biosynthesis due to poor substrate affinity for the major phenylethanolamine-N-methyltransferase in brain, or it could reflect diminished neuronal storage. Thus, the hypothetical mechanism depicted in Figure 1C has attractions that may outweigh those of the mechanism depicted in Figure 1B. Clearly more research is required to address the importance of methyldopa metabolites in the E neurons of the brain.

References
11. Freed CR, Quintero E, Murphy RC. Hypotension and hypotha
lamic amine metabolism after long-term α-methyldopa infu-
sions. Life Sci 1978;23:313-322
89:286-288
13. Hökfelt T, Fuxe K, Goldstein M, Johansson O. Immunohisto-
chemical evidence for the existence of adrenaline neurons in
M. Possible involvement of central adrenaline neurons in vaso-
motor and respiratory control. Studies with clonidine and its
interactions with piperoxane and yohimbine. Eur J Pharmac
1974;28:89-94
15. Koslow SH, Schlumpf M. Quantitation of adrenaline in rat
brain nuclei and areas by mass fragmentography. Nature
1974;251:530-531
16. Reis DJ, Granata AR, Joh TH, Ross CA, Ruggiero DA, Park
DH. Brain stem catecholamine mechanisms in tonic and reflex
control of blood pressure. Hypertension 1984;6(5 Pt 2):7-15
17. Schaumann O. Über Oxy-Ephedrine. Arch Exp Pathol Phar-
makol 1931; 160:127-176
Physiol 1948;153:586-600
19. Muscholl E. Biosynthese (aus α-Methyladopa). Aufnahme und
Freisetzung von α-Methyladrenaline. Naunyn Schmiedebergs
Arch Pharmacol 1965;251:162-163
Euler US et al., eds. Mechanisms of release of biogenic
21. Muscholl E, Sprenger E. Vergleichende Untersuchung der
Blutdruckwirkung, Aufnahme, und Speicherung von Dihy-
droxyephedrin (α-Methyladrenaline) und Dihydroxyepho-
seudephedrin. Naunyn Schmiedebergs Arch Pharmacol 1966;
254:109-124
22. Malik KU. Effect of (±) dihydroxyephedrine and (±) dihy-
droxy pseudoephedrine on adrenergic transmission in mesen-
teric arteries. Br J Pharmacol 1971;41:352-360
binding to adrenergic receptors in rat forebrain. J Med Chem
1981;24:1261-1263
24. Nikamp FP, de Jong W. Centrally induced hypotension by α-
methyldopa and α-methylnoradrenaline in normotensive and
D. Differential competition by methyldopa metabolites for
adrenergic receptors in rat forebrain. J Pharm Exp Ther
1982;220:552-560
D. Effect of centrally-administered α-methylepinephrine on
cardiovascular control; comparison with epinephrine and α-
methylnoradrenaline. J Pharm Exp Ther 1983;227:484-490
27. Tung CS, Robertson D, Goldberg MR. Hypertensive effect of
yohimbine following selective injection into the nucleus trac-
probe for study of the α-adrenoceptor. Pharmacol Rev
1983;35:143-180
29. Smith WL, Egle JL, Adams MD. Adrenergic receptors in the
nucleus tractus solitarii of the rat. Eur J Pharmacol 1982;
81:11-19
30. Ectart PM, Rowe PR, Louis WJ. α-Methyladrenaline is a cen-
tral metabolite of α-methyldopa. J Pharm Pharmacol 1983;
35:519-520
31. Axelrod J. Purification and properties of phenylethanolamine-
32. Fuller RW, Hunt JM. Substrate specificity of phenylethanol-
amine-N-methyltransferase. Biochem Pharmacol 1965; 14:
1896-1897
Antihypertensive metabolites of alpha-methyldopa.
D Robertson, C S Tung, M R Goldberg, A S Hollister, J F Gerkens and J A Oates

Hypertension. 1984;6:II45
doi: 10.1161/01.HYP.6.5_Pt_2.II45

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 1984 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/6/5_Pt_2/II45