Assessment of Urinary F₂-Isoprostanes in Experimental and Clinical Studies: Mass Spectrometry Versus ELISA

To the Editor:

Ojeda and colleagues¹ reported that oxidative stress renal markers contribute to sex differences in blood pressure in adult growth-restricted offspring rats. The antibody used in the ELISA kit used by Ojeda et al¹ is specific for 15(S)-8-iso–PGF₂α,² (http://www.oxfordbiomed.com/sites/default/files/spec_sheet/EA85.120426.pdf) one of 64 possible F₂-isoprostanes. At first glance, ELISA and gas chromatography-mass spectrometry (GC-MS) seem to correlate (Figure, A); however, the Bland-Altman method reveals enormous differences and systematic errors in the ELISA method (Figure, B). Lack of analytically satisfactory agreement applies to another commercially available 15(S)-8-iso–PGF₂α ELISA kit (http://www.caymanchem.com/pdfs/516351.pdf).

15(S)-8-iso–PGF₂α is excreted in the urine in free and conjugated forms³ (Figure C). The lack of appreciable biological variation in urinary excretion in humans² and rats (58±16 pg/mg creatinine; 1 female, 4 male) and the manifold higher reported 15(S)-8-iso–PGF₂α levels¹ reveal serious analytic shortcomings with the use of 15(S)-8-iso–PGF₂α ELISA kits. This may compromise the scientific outcome. Inclusion of clean-up procedures is likely to improve the analytic performance of ELISA kits.⁴ Yet, reliable assessment of 15(S)-8-iso–PGF₂α in experimental and clinical study samples is best accomplished by tandem mass spectrometry-based methods.²,⁴

![Figure](image)

Figure. Comparison between the commercially available ELISA assay (Urinary Isoprostane ELISA Kit, product number EA85; Oxford Biomedical Research) used by Ojeda et al¹ for 15(S)-8-iso–PGF₂α, and a GC-MS assay for F₂-isoprostanes by (A) linear regression and (B) the Bland-Altman method. The straight line theoretical in (A) indicates complete agreement.² C, 15(S)-8-iso–PGF₂α (mean±SD, n=3) measured by GC-tandem MS² in fresh urine of a healthy female subject before (CONTROL) and after treatment with β-glucuronidase (ENZYME; Sigma; 2 hours, 37°C) or 1 mol/L KOH in methanol (KOH; 1 hour, 22°C).²

Disclosures

None.

Dimitrios Tsikas
Maria-Theresia Suchy
Institute of Clinical Pharmacology
Hannover Medical School
Germany

Assessment of Urinary F₂-Isoprostanes in Experimental and Clinical Studies: Mass Spectrometry Versus ELISA
Dimitrios Tsikas and Maria-Theresia Suchy

Hypertension. 2012;60:e14; originally published online July 2, 2012;
doi: 10.1161/HYPERTENSIONAHA.112.199315
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2012 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/60/2/e14

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/