Neuropeptide Y Promoter Polymorphism Modifies Effects of a Weight-Loss Diet on 2-Year Changes of Blood Pressure
The Preventing Overweight Using Novel Dietary Strategies Trial

Xiaomin Zhang, Qibin Qi, Jun Liang, Frank B. Hu, Frank M. Sacks, Lu Qi

Abstract—Neuropeptide Y (NPY) is implicated in the regulation of blood pressure (BP), and NPY pathways in the hypothalamus are sensitive to dietary fat. We evaluated the potential effect of a functional variant rs16147 located in the NPY gene promoter region on the association between 2-year diet intervention and change in multiple BP measures in the randomized Preventing Overweight Using Novel Dietary Strategies Trial. The NPY rs16147 was genotyped in 723 obese adults who were randomly assigned to 1 of 4 diets differing in the target percentages of energy derived from fat, protein, and carbohydrate. The changes of 4 BP phenotypes, including systolic BP, diastolic BP, pulse pressure, and mean arterial pressure, during 2-year diet intervention were analyzed. In the total participants and participants with hypertension, we observed significant and consistent interactions between rs16147 genotype and dietary fat intake on changes in multiple BP phenotypes at 2 years (all P for interactions <0.05). The risk allele (C allele) was associated with a greater reduction of BP phenotypes in response to low-fat diet, whereas an opposite genetic effect was observed in response to high-fat diet. In addition, the C allele was related to greater changes in 4 BP phenotypes in hypertensive compared with nonhypertensive participants. Our data suggest that NPY rs16147 may modulate the association between dietary fat intake and changes in BP phenotypes, and the C allele exerts a long-term beneficial effect on lowering BP in response to low-fat diet in obese and hypertensive subjects. (Hypertension. 2012;60:1169-1175.)

Key Words: neuropeptide Y ■ genetic variation ■ dietary fat ■ gene-diet interaction ■ blood pressure

Obesity frequently coexists with hypertension, and both are important risk factors for cardiovascular disease. Many studies have shown that dietary intervention on weight loss resulted in lower blood pressure (BP), and weight reduction is recommended in major guidelines as primary intervention in the treatment of high BP. However, the BP-lowering effect with weight-loss response to dietary intervention exhibited substantial interindividual variations, and accumulating evidence suggests that genetic variants may contribute to such differential responses.

Neuropeptide Y gene (NPY) is widely expressed in the peripheral and central nervous systems and is involved in diverse physiological functions, including BP regulation. Previous studies showed that plasma NPY levels correlated with the BP phenotypes and were elevated in hypertensive patients. In addition, NPY levels are modulated by dietary factors, especially dietary fat.

Recently, a functional single nucleotide polymorphism (SNP) in the promoter region of NPY, rs16147 (C-399T), was found to be related to risks for early onset atherosclerosis and ischemic stroke and showed allele-specific effects on NPY gene expression and NPY peptide level. However, no study has examined the effect of this functional genotype and its interaction with dietary factors on BP.

In this study, we aimed to investigate whether NPY rs16147 genotype modulated the effects of weight-loss diet varying in macronutrients on changes of BP phenotypes in a 2-year randomized intervention trial. In addition to systolic BP (SBP) and diastolic BP (DBP), we also assessed pulse pressure (PP, the difference between SBP and DBP), a measure of central arterial stiffness and a predictor of cardiovascular mortality, and mean arterial pressure (MAP), a weighted average of SBP and DBP. Both PP and MAP are predictive of hypertension and cardiovascular disease.

Methods

Study Population
The Preventing Overweight Using Novel Dietary Strategies Trial was conducted from October 2004 through December 2007 at 2 sites: Harvard School of Public Health and Brigham and Women’s Hospital in Boston, MA, and Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (F.B.H., F.M.S., L.Q.).

Received April 27, 2012; first decision May 23, 2012; revision accepted August 8, 2012.

From the Departments of Nutrition (X.Z., Q.Q., J.L., F.B.H., F.M.S., L.Q.) and Epidemiology (F.B.H.), Harvard School of Public Health, Boston, MA; Department of Occupational and Environmental Health and Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (X.Z.); Department of Endocrinology, Central Hospital of Xuzhou, Xuzhou, China (J.L.); and Channing Laboratory, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA (F.B.H., F.M.S., L.Q.).

The online-only Data Supplement is available with this article at http://hyper.ahajournals.orglookup/suppl/doi:10.1161/HYPERTENSIONAHA.112.197855/-/DC1.

Correspondence to Dr Lu Qi, Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115. E-mail nhqi@channing.harvard.edu or Xiaomin Zhang, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030. E-mail mingx2117@mail.hust.edu.cn

© 2012 American Heart Association, Inc.
Hospital in Boston, MA and the Pennington Biomedical Research Center of Louisiana State University System, Baton Rouge, LA. The design and sample collection have been described previously in detail.24 Briefly, the study population was composed of 811 overweight or obese participants aged 30 to 70 years and had a body mass index of 25 to 40 kg/m². Major criteria for exclusion were the presence of diabetes mellitus treated with oral medications or insulin, or unstable cardiovascular disease, the use of medications that affect weight, and insufficient motivation as assessed by interview and questionnaire. Individuals with type 2 diabetes mellitus controlled by diet or with hypertension or hyperlipidemia treated with diet or drugs were eligible to participate. The participants were randomly assigned to 1 of 4 diets constituting a 2-by-2 factorial design; the target percentages of energy derived from fat, protein, and carbohydrate in the 4 diets were 20%, 15%, and 65%; 20%, 25%, and 55%; 40%, 15%, and 45%; and 40%, 25%, and 35%. After 2 years, 645 participants (80% of total population) completed the trial. The study was approved by the human subjects committee and by a data and safety monitoring board appointed by the National Heart, Lung, and Blood Institute. All participants provided written informed consent.

Measurements
Body weight and waist circumference were measured in the morning before breakfast on 2 nonconsecutive days at baseline and at 6 and 24 months, as well as on a single day at 12 and 18 months. Dietary intake was assessed in a random sample of 50% of the participants by a review of the 5-day diet record at baseline and by 24-hour recall during a telephone interview on 3 nonconsecutive days at 6 months and 2 years.22 Biomarkers of nutrient intake were used to validate self-reported adherence to macronutrient targets as follows: high-density lipoprotein cholesterol for carbohydrate, urinary nitrogen excretion for protein, and respiratory quotient for fat.22,24 Blood pressure was measured on 2 days at baseline and at 6, 12, and 24 months by an automated device (Omron HealthCare, HEM907XL). The calibration was evaluated at regular intervals using a mercury manometer. PP was calculated as SBP minus DBP, and MAP was determined using the following formula: 1/3 SBP+2/3 DBP.22

Genotyping
DNA was extracted from theuffy coat fraction of centrifuged blood using the QIAmp Blood kit (Qiagen, Chatsworth, CA). SNP NPY rs16147 was genotyped successfully in 723 total participants with available DNA samples using the OpenArray SNP Genotyping System (BiosTrove, Woburn, MA). The genotype success rate was 99%. Replicated quality control samples (10%) were included in every genotyping plate with >99% concordance.25,26

Statistical Analysis
The primary outcomes were changes in 4 BP phenotypes, including SBP, DBP, PP, and MAP, during the intervention. Because previous studies have shown that NPY was sensitive to dietary fat,15-18 we, therefore, compared low-fat (20%) versus high-fat (40%) diets in the primary analysis and compared average-protein (15%) versus high-protein (25%) diets in the secondary analysis. We also performed stratified analysis according to baseline hypertension status. The Hardy-Weinberg equilibrium and comparison of categorical variables were assessed with χ² test. Differences in continuous variables at baseline were tested using general linear models, with adjustment for age, sex, and ethnicity. The main effects of genotype and genotype-diet interactions on changes of BP were analyzed using general linear models, adjusted for age, sex, ethnicity, baseline body mass index, baseline value for respective BP phenotypes, antihypertensive medication use, and weight loss. We excluded individuals with missing measures at each time point in the analysis. Linear mixed models, using time as a repeated measurement factor, were used to test genetic associations with the trajectory of changes in outcomes according to diet intervention during the 2 years of follow-up by including genotype-time interaction terms. Additive genetic models were analyzed for genotype, following the previous reports.27,28 Because the majority of the study population were white (80%), similar analyses were repeated in white participants. We used Quanto 1.2.4 software (http://hydra.usc.edu/gxe; University of Southern California, Los Angeles, CA) to estimate the detectable interaction effects of genotype by diet intervention under an additive model. The study had 80% power to detect the gene-diet interaction by accounting for 6.9 mm Hg change in SBP, 4.6 mm Hg change in DBP, 4.0 mm Hg change in PP, and 5.2 mm Hg change in MAP for hypertensive subjects at 2 years at a significance level of 0.05. All reported P values were 2 sided, and a P value of 0.05 was considered statistically significant. All data were analyzed with SAS version 9.1 (SAS Institute, Inc, Cary, NC).

Results
Characteristics of Study Population
The distribution of NPY rs16147 genotype was in Hardy-Weinberg equilibrium in the study sample and the different ethnic groups (P>0.10), and the minor allele frequency was 0.48 in total participants. The genotype frequencies were significantly different among ethnicity (P<0.005). No significant differences across the genotype were observed in weight, body mass index, any of the BP phenotypes, the prevalence of hypertension, and biomarkers of adherence (urinary nitrogen, respiratory quotient, and high-density lipoprotein cholesterol) at baseline, although the genotype was related to age (Table).

Effect of NPY rs16147 Genotype on 2-Year Changes in BP Response to Dietary Fat
In all the participants, statistically significant and consistent interactions between rs16147 genotype and dietary fat intake were found on changes in SBP, DBP, PP, and MAP during 2-year intervention after adjustment for potential confounders (P for interactions=0.0002, 0.014, 0.001, and 0.001, respectively) (Figure 1). In the adjusted model, the C allele was associated with a greater decrease in 2 BP phenotype (SBP and MAP) responses to low-fat diet intake and an increase in 3 BP phenotype (SBP, PP, and MAP) responses to high-fat diet (all P<0.05) (Figure 1).

We next performed secondary analysis to test whether NPY rs16147 had different modulation on BP response to dietary fat intake in subgroups with (n=264) and without hypertension (n=459). In participants with hypertension, we observed significant gene-diet interactions on SBP, PP, and MAP using the same statistical models (P for interactions=0.0006, 0.0005, and 0.014, respectively) (Figure 2). In the low-fat group, the risk allele (C allele) was associated with greater reduction in 3 BP phenotypes (SBP, PP, and MAP). Conversely, the C allele was associated with an increase in 2 BP phenotypes (SBP and PP) in the high-fat group. In the nonhypertensive subjects, we did not find any significant interactions between rs16147 genotype and dietary fat intake and genetic effects on any of the BP phenotypes (all P>0.05). In addition, the C allele had greater changes in the 4 BP traits in hypertension compared with nonhypertension in response to both low-fat diet and high-fat diet (Table S1 in the online-only Data Supplement). When consuming low-fat diets, the C allele was associated with a 5.1-mm Hg greater reduction of SBP in subjects with hypertension but only with a 0.2-mm Hg greater reduction of SBP.
in nonhypertensive subjects. Similarly, less reduction of DBP, PP, and MAP was found in nonhypertensive subjects compared with hypertensive subjects.

At 2 years, no significant genetic effects and interactions were observed on changes in body weight (all \(P > 0.05 \); Table S1 and Figure S1 in the online-only Data Supplement).

We did not find significant interactions between this \(NPY \) variant and dietary protein intake. Similar results were found when the analyses were restricted to the white participants.

Trajectory of Changes in BP Phenotypes by the \(NPY \) rs16147 Genotype in Response to Dietary Fat

We further examined the dynamic pattern of changes in BP phenotypes by \(NPY \) genotype during the 2-year intervention. In all the participants, we observed significant genotype-time interactions on changes in SBP and MAP response to low-fat diet (\(P \) for interactions=0.035 and 0.032) and changes in SBP and PP response to high-fat diet (\(P \) for interactions=0.027 and 0.034) (Figure 3). In the participants with hypertension, we observed significant and consistent genotype-time interactions on changes in all the 4 BP phenotypes in the low-fat group (\(P \) for interactions=0.003, 0.013, 0.026, and 0.004, respectively) but not in the high-fat group (Figure 4). In addition, in the low-fat group, the C allele was associated with sustained improvement in 2 BP phenotypes (SBP and MAP) in all the participants and 4 BP phenotypes in the participants with hypertension across 2-year intervention (Figures 3 and 4). Consistent with the findings presented above, the genotype-time interactions on changes in BP were not significant in the nonhypertensive subjects. No significant genotype-time interaction on weight change in each subgroup was found over time (Figure S2). The similar dynamic patterns of the genotype effects on BP phenotypes were observed in the white population.

Discussion

In the 2-year randomized weight-loss intervention trial, we observed significant and consistent interactions between the \(NPY \) rs16147 SNP and dietary fat intake in relation to changes in multiple BP phenotypes. Interestingly, such gene-diet interactions only appeared in hypertensive patients but not in nonhypertensive subjects. Carriers of the C allele exhibited significantly greater reduction in BP phenotypes when consuming low-fat diet but showed
greater increase in BP phenotypes in response to high-fat diet intake at 2 years.

To the best of our knowledge, this is the first study examining the interactions between NPY genetic variant and dietary fat intake in relation to long-term changes of BP phenotypes. Our findings are in concordance with the functional roles of NPY in the regulation of BP\(^{11,29}\). The SNP rs16147 (C-485T) is a functional variant located in the NPY gene promoter region and in linkage disequilibrium with other NPY SNPs, which were associated with early onset coronary artery disease in a previous study.\(^{19}\) Consistent evidence has shown an allele-specific effect of rs16147 on NPY expression, and the SNP accounts for the majority of the variation in expression in vivo\(^{21,30}\) which correlated with plasma NPY peptide levels.\(^{21}\) The NPY SNP has been previously related to several BP-related conditions, such as early onset atherosclerosis\(^{19}\) and ischemic stroke.\(^{20,31}\) Findings from the present study provide further support the significant association between the

Figure 1. Effects of neuropeptide Y rs16147 genotype and fat intervention on changes in blood pressure at 2 years in all the participants. Data included 75 and 82 (TT), 127 and 125 (TC), and 74 and 61 (CC) participants at the low-fat group and the high-fat group at 2 years (total n=544). P values are adjustment for age, sex, ethnicity, baseline body mass index, baseline values for respective phenotypes, antihypertensive medication use, and weight loss. SBP indicates systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure.

Figure 2. Effects of neuropeptide Y rs16147 genotype and fat intervention on changes in blood pressure at 2 years in hypertensive participants. Data included 29 and 33 (TT), 51 and 51 (TC), and 18 and 21 (CC) participants at the low-fat group and the high-fat group at 2 years (total n=203). P values are adjustment for age, sex, ethnicity, baseline body mass index, baseline values for respective phenotypes, antihypertensive medication use, and weight loss. SBP indicates systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure; NS, no significance.
Figure 3. Changes in blood pressure in the low-fat and high-fat diet intervention groups according to neuropeptide Y rs16147 genotype from baseline to 6 months, 12 months, and 2 years in all the participants. Data included 358 and 365, 319 and 323, 290 and 292, and 276 and 268 in the low-fat and high-fat diet groups at baseline, 6 months, 12 months, and 2 years, respectively. P values are adjustment for age, sex, ethnicity, baseline body mass index, baseline values for respective phenotypes, antihypertensive medication use, and weight loss. SBP indicates systolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure.

Figure 4. Changes in blood pressure in the low-fat diet intervention group according to neuropeptide Y rs16147 genotype from baseline to 6 months, 12 months, and 2 years in hypertensive participants. Data included 127, 118, 111, and 98 at baseline, 6 months, 12 months, and 2 years, respectively. P values are adjustment for age, sex, ethnicity, baseline body mass index, baseline values for respective phenotypes, antihypertensive medication use, and weight loss. SBP indicates systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure; MAP, mean arterial pressure.
NPY genetic variant and BP regulation. Therefore, we can speculate that rs16147 polymorphism might affect the transcription efficiency and expression of NPY gene, resulting in changes either in systemic or in local levels of NPY, which can induce vasoconstriction and stimulate vascular smooth muscle cell proliferation and angiogenesis, as well as stimulate sympathetic nervous system activity, contributing to an increase in BP level.\(^\text{29,32}\)

Several previous studies have demonstrated that NPY pathways in the hypothalamus were responsive to the amounts of fat present in the ingested diet.\(^\text{30,34}\) In animal studies, long-term feeding of high-fat diets led to decreased NPY levels in hypothalamus,\(^\text{16,17}\) whereas feeding of low-fat diets led to an increased NPY gene expression in hypothalamus.\(^\text{18}\) These studies provide fundamental evidence for the potential mechanisms underlying the observed gene-dietary fat interaction in relation to changes in BP. Our results showed that carriers of the C allele exhibited opposite effects on BP changes in response to low- and high-dietary fat intakes, which are in line with a recently proposed hypothesis of differential susceptibility. The hypothesis suggests that vulnerability genes or risk alleles may function more like plasticity genes, thereby rendering some individuals more responsive to environmental influences than others where genetic risk is either attenuated by a favorable environment or amplified by an adverse environment.\(^\text{18,33}\) Consistent with this idea, our data supported that the risk allele (C allele) may act as either a protective or a detrimental factor, depending on the differential exposure to dietary fat intake.

Another intriguing finding from the present study is that the gene-diet interaction was only observed in participants with hypertension, and the risk allele had remarkably greater changes in 4 BP phenotypes in hypertensive patients than those without hypertension in response to low-fat or high-fat diet interventions. The results suggest that the initial BP levels might affect the NPY genetic modulation on subsequent BP changes by a diet intervention. These findings indicate that low-fat diets might benefit more on those with the C allele and high BP. In contrast, when consuming a high-fat diet, carriers of the C allele with hypertension had a more unfavorable effect on BP.

In addition, although our study is thus far the largest and longest diet intervention trial on changes in BP, the size may be relatively small to detect small genetic effects or gene-diet interactions. Furthermore, it is difficult to tease out which macronutrient is responsible for the observed interactions because diet fat is correlated with other macronutrients, such as carbohydrates. Finally, because the majority of the participants in the present study are whites and of a specific body mass index range, the generalizability of our findings to other minority groups or the general population with normal range of body weight needs to be further verified.

In conclusion, we found that genetic variation within the NPY promoter region might modulate long-term changes of BP in response to weight-loss diet intervention varying in fat among overweight or obese subjects. Individuals with the C allele showed a greater reduction in BP in response to low-fat diet but more increase in BP in response to high-fat diet, and such interactions only presented in hypertensive subjects. These findings may provide novel information on the development of effective diet intervention in lowering BP levels in high-risk populations.

Perspectives

NPY is implicated in the regulation of BP, and NPY pathways in the hypothalamus are sensitive to dietary fat. A functional variant rs16147 located in the promoter region of NPY gene was found to influence NPY gene expression, NPY levels, BP, and cardiovascular risk. We evaluated the potential effect of variant rs16147 on the association between 2-year weight-loss diet intervention and changes in multiple BP measures in 723 obese patients from the randomized Pounds Lost Trial. Our results indicate that individuals with the C allele (the risk allele for high BP) might significantly benefit from low-fat diet intake in long-term reduction of BP phenotypes, and such benefits were more evident in hypertensive subjects. These findings may provide novel information for the development of a personalized, more effective diet intervention based on genetic background in the prevention of hypertension.

Acknowledgments

We are particularly grateful to all participants in the trial for their dedication and contribution to the research.

Sources of Funding

This study was supported by grants from the National Heart, Lung, and Blood Institute (HL071981); the Boston Obesity Nutrition Research Center (DK46200); the National Institute of Diabetes and Digestive and Kidney Diseases (DK091718); the National Natural Science Foundation of China (NNSFC30972453); and the Program for New Century Excellent Talents in University (NCET-10-0420). Dr Lu Qi was a recipient of an American Heart Association Scientist Development Award (0730094N).

Disclosures

None.

References

5. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, Jones DW, Materson BJ, Oparil S, Wright JT Jr, Roccella EJ; The seventh report of the joint national committee on prevention, detection,
Novelty and Significance

This is the first study to date to assess the interactions between a functional variant in neuropeptide Y gene and popular weight-loss diets on changes in multiple blood pressure measures in the largest and longest randomized intervention trial. We found the individuals with the risk allele of variant rs16467 might obtain more benefits from low-fat diet intake in long-term reduction of blood pressure phenotypes, and such benefits were more evident in hypertensive subjects. These novel findings provide supportive evidence for the development of personalized diet intervention in prevention of hypertension based on genetic background.
Neuropeptide Y Promoter Polymorphism Modifies Effects of a Weight-Loss Diet on 2-Year Changes of Blood Pressure: The Preventing Overweight Using Novel Dietary Strategies Trial
Xiaomin Zhang, Qibin Qi, Jun Liang, Frank B. Hu, Frank M. Sacks and Lu Qi

Hypertension. 2012;60:1169-1175; originally published online September 10, 2012; doi: 10.1161/HYPERTENSIONAHA.112.197855

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/60/5/1169

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2012/09/10/HYPERTENSIONAHA.112.197855.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Neuropeptide Y Promoter Polymorphism Modifies Effects of a Weight-Loss Diet on 2-Year Changes of Blood Pressure: the Pounds Lost Trial

ONLINE SUPPLEMENT

Xiaomin Zhang, Qibin Qi, Jun Liang, Frank B. Hu, Frank M. Sacks, Lu Qi

Author Affiliations:

From Department of Nutrition (X.Z., Q.Q., J.L., F.B.H., F.M.S., L.Q.) and Epidemiology (F.B.H.), Harvard School of Public Health, Boston, MA; Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Environment and Health (X.Z.), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Endocrinology, the Central Hospital of Xuzhou (J.L.), Xuzhou, China; the Channing Laboratory (F.B.H., F.M.S., L.Q.), Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA.

Corresponding Author:

Correspondence to Lu Qi, Department of Nutrition, Harvard School of Public Health, 665 Huntington Ave, Boston, MA 02115. Telephone: 617-432-4116; Fax: 617-432-2435; E-mail address: nhlqi@channing.harvard.edu; Xiaomin Zhang, Department of Occupational and Environmental Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China 430030. Telephone: 617-432-4116; Fax: 617-432-2435; E-mail: mingxz117@mail.hust.edu.cn

Word count: text, 5193; tables, 1; figures, 4; online appendix, 1

Running title: NPY-diet interaction on blood pressure
Table S1. Genetic Effects of *NPY* rs16147 on 2-Year Changes in BP and body weight in Hypertension and Non-hypertension Subgroups *

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hypertension</th>
<th>Non-hypertension</th>
<th>Total participants</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>β†</td>
<td>SE</td>
<td>P</td>
</tr>
<tr>
<td>Low-fat diet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>-5.1</td>
<td>1.8</td>
<td>0.005</td>
</tr>
<tr>
<td>DBP</td>
<td>-1.5</td>
<td>1.1</td>
<td>0.174</td>
</tr>
<tr>
<td>PP</td>
<td>-3.5</td>
<td>1.1</td>
<td>0.001</td>
</tr>
<tr>
<td>MAP</td>
<td>-2.7</td>
<td>1.3</td>
<td>0.036</td>
</tr>
<tr>
<td>Weight ‡</td>
<td>-0.2</td>
<td>1.0</td>
<td>0.817</td>
</tr>
<tr>
<td>High-fat diet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SBP</td>
<td>3.3</td>
<td>1.5</td>
<td>0.032</td>
</tr>
<tr>
<td>DBP</td>
<td>0.6</td>
<td>1.0</td>
<td>0.571</td>
</tr>
<tr>
<td>PP</td>
<td>2.7</td>
<td>1.0</td>
<td>0.006</td>
</tr>
<tr>
<td>MAP</td>
<td>1.5</td>
<td>1.1</td>
<td>0.187</td>
</tr>
<tr>
<td>Weight ‡</td>
<td>0.1</td>
<td>1.0</td>
<td>0.919</td>
</tr>
</tbody>
</table>

β represents change in each BP trait and weight for each C allele of the *NPY* genotype.

†Values calculated from the regression models with each trait as the outcome, adjusting for age, sex, ethnicity, baseline BMI, baseline value for respective BP phenotypes, antihypertensive medication use and weight loss.

‡Values calculated from the regression models, adjusting for age, sex, ethnicity and baseline BMI.
Figure S1. Effects of NPY rs16147 genotype and fat intervention on changes in weight at 2 years in non-hypertensive participants (A), hypertensive participants (B) and all the participants (C). Data included 48 and 55 (TT), 82 and 84 (TC), and 60 and 42 (CC) in non-hypertensive participants (A) (total n=371); 31 and 34 (TT), 55 and 57 (TC), and 18 and 23 (CC) in hypertensive participants (B) (total n=218); 79 and 89 (TT), 137 and 141 (TC), and 78 and 65 (CC) in all the participants (C) (total n=589) at the low fat group and the high fat group at 2 years. P values are adjustment for age, sex, ethnicity and baseline BMI.
Figure S2. Changes in weight in the low-fat and high-fat diet intervention group according to NPY rs16147 genotype from baseline to 6 months, 12 months and 2 years in non-hypertensive participants (A), hypertensive participants (B) and all the participants (C). Data included 231 and 228, 201
and 204, 184 and 187, and 190 and 181 in non-hypertensive participants (A), 127 and 137, 118 and 123, 111 and 111, and 104 and 114 in hypertensive participants (B), 358 and 365, 319 and 327, 295 and 298, and 294 and 295 in all the participants (C) in the low-fat and high-fat diet group at baseline, 6 months, 12 months and 2 years. *P* values are adjustment for age, sex, ethnicity and baseline BMI.