The remodelling of uteroplacental arteries is a key process in the first half of human pregnancy. The transformation from low-flow/high-resistance to high-flow/low-resistance arteries that ensures sufficient blood supply to meet the requirements of the fetus is caused by a loss of elasticity and vasomotor control. This remodelling is facilitated by perivascular invasion of extravillous trophoblast cells and infiltration of vessel walls by endothelial trophoblast cells. Impaired trophoblast invasion of the myometrial segments is therefore associated with placental hypoperfusion and may play a role in the pathogenesis of some cases of intrauterine growth restriction and preeclampsia. Preeclampsia is a multisystem disorder of pregnancy triggered by placental ischemia and release of placental factors causing widespread endothelial dysfunction. The reasons for altered trophoblast invasion in preeclampsia are incompletely understood, but similarities between development of normal placenta and development of cancer point toward a key role of growth factors in normal and abnormal placentation.

MicroRNAs (miRNA) are becoming increasingly recognized as critical regulators of cellular function. These short noncoding RNA species act via repression of gene targets mediated through binding to miRNA seed sequences usually, but not exclusively, located in the 3′-untranslated region. This interaction leads to a block in translation of the gene to protein or induction of messenger RNA degradation. As such, the expression pattern and potential dysregulation of individual miRNA species, or miRNA signatures in individual cells, tissues, and organs are critical in understanding the role of miRNAs in health and disease. Although the discovery of miRNA was initially made in 1993, it is only in recent years that full recognition of their broad importance in cellular homeostasis, as well as the potential of miRNAs as therapeutic entities and as biomarkers of disease has been established.

In contrast to diseases such as those of the heart and cancer, relatively little is known about miRNA during pregnancy, both at the level of normal placental growth and function and in the pathophysiology of complications in pregnancy, including preeclampsia. This lack of data is a consequence of the relative lack of studies in this area, and the complications of addressing an exclusively human disease. In addition, there are challenges in addressing the discrepancy between the key pathophysiological changes that are initiated well before 20 weeks gestation, and the clinical symptoms that are not manifest until after 20 weeks gestation. Clinical studies on miRNA expression are often restricted to placenta tissue at the time of delivery. Nevertheless, the available studies confirm dysregulation of miRNAs that play a role in the regulation of trophoblast cell invasion, such as miR-195 and miR-29b, and mitochondrial function such as miR-210. In this issue of Hypertension, Fu and colleagues assess, in detail, one particular miRNA, miR-376c, and its expression and function in normal pregnancy and in preeclampsia using a range of cellular assays, molecular manipulations, and patient materials. miR-376c is expressed within a region of imprinted DNA on human chromosome 14, a region rich in noncoding RNA species, including an abundance of distinct miRNAs (http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=14:100505828-102472517;region=AL132709.5). Indeed, miR-376c itself is transcribed from the miR-376 cluster pri-miRNA complex that encodes 5 separate mature miRNAs, a region recently linked to the development of glioma. The experiments presented in this study can clearly be divided into evaluation of miR-376c in clinical material, assessment of function in vitro by manipulation of miR-376c in relevant systems, and the mechanism of action.

The clinical sample dataset presented essentially leads to the hypothesis that downregulation of this miRNA is important in preeclampsia. The data demonstrate that miR-376c is modestly upregulated during the time course of normal pregnancy through the 3 trimesters, but is downregulated in the placental tissue RNA samples of preeclamptic cases that have term births (but intriguingly not in those with preterm births) compared with age-matched controls. Importantly, plasma levels of miR-376c are lower in both preterm and term samples versus controls. Cases were recruited from sites in China and Canada and, although not large patients numbers, the sample set shows significant differences in levels of miR-376c. In Figure 1A–1D, the authors present their data in box plots representing median values, 25% and 75% percentiles, and minimum and maximum values. Although they used an appropriate data presentation, it appears (Figure 1D–1F) that the values are not normally distributed; yet, parametric statistics have been used. Further rigorous analysis using larger patient populations will be important, for clarity, validation, and assessment of the influence of geographical variation. The authors have reported relative miR-376c levels with U6 as an internal control in these
samples. It is well known for plasma/serum-derived samples that stringent controlling and normalization is difficult. A number of strategies have therefore evolved, including spiking controls or normalization using entire miRNA expression datasets that would be invaluable for inclusion in future studies for confirmation of this important finding. This is especially important in defining the utility of miR-376c, or indeed any other miRNA, as a biomarker of the preeclamptic condition. Nevertheless, the data presented certainly suggest that miR-376c is downregulated, and that this may be important in the pathophysiology of preeclampsia.

Next, the authors present a thorough and compelling series of experiments that define the effect of miR-376c manipulation using an immortalized cell line, stable transfectants, and placental villous tip explants. They show that simple overexpression of miR-376c in any of these model systems has, in general, the overall effect of enhancing trophoblast cell growth and migration, and conversely, downregulation of miR-376c reduces these effects on trophoblast cells. Clearly, caution is required when artificially manipulating miRNA by overexpression or inhibition, as the resulting levels achieved can be dramatically affected and beyond the levels altered in the disease under study. Although lacking details such as Cy3-labeled visualization of transfection percentages and locales in the explant model, these studies support the concept that downregulation of miR-376c hinders trophoblast proliferation and migration, supporting the hypothesis that originated from assessment of clinical material.

An important component of this study is a detailed account of the proposed mechanism of action of miR376c in the setting of trophoblast function. The authors focus on the transforming growth factor-β (TGF-β) and Nodal pathway. Using reporter assays, they show that both activin-like kinase (ALK)5 and ALK7 are direct, validated targets of miR-376c. They further show that manipulation of miR-376c leads to the reciprocal alteration in ALK5 and ALK7 at the protein level. Moreover, small interfering RNA to ALK5 (but not ALK7) mimics the effect of miR376c overexpression, and the effects of miR-376c can be overridden by plasmid-mediated overexpression of ALK5 or ALK7. Combining small interfering RNAs or plasmid systems in a single experiment to manipulate both ALK5 and ALK7 simultaneously may be a useful strategy to further refine these experiments. Furthermore, miR-376c has many other putative gene targets, and although it is beyond the scope of the current article, the impact of miR-376c on other targets expressed in trophoblasts would be important to assess globally the transcriptional influence of this miRNA in trophoblasts. Mechanistically, the authors conduct the necessary experiments to show that miR-376c overexpression acts to repress both TGF-β-induced and Nodal-induced signaling (blocked pSMAD2/3 activation) and expression of pathway-responsive genes (eg, p21). Thus, the study provides compelling data suggesting that miR-376c plays an important role in normal pregnancy through regulation of ALK5 and ALK7 activation mediated by TGF-β and Nodal, respectively, and that downregulation in preeclampsia combined with elevated TGF-β and Nodal levels leads to enhanced activation of ALK5/ALK7, in turn resulting in reduced trophoblast cell growth and invasion, and ultimately, preeclampsia.

In any complex system, interplay between different cell types and their environmental cues impact on disease progression. Within any given cell type, many miRNA are expressed and their levels are governed by processes, including transcriptional regulation, and miRNA processing and activity. In addition, the secretion of miRNA from cells has the capacity to impact the function of other cells locally should the miRNA be taken up. As suggested, this may certainly impact on similar signaling systems in alternate cell types, such as endothelium or smooth muscle. It is very clear that the effect of miR-376c on trophoblast cell function is potent, and is focused on signaling mediated by TGF-β and Nodal.

What about other miRNAs? It has been established that miRNAs can work alone or in concert with other miRNAs to affect the transcriptome in healthy cells and in the progression of disease.9 With respect to the latter, this may be via multiple mechanisms, including different miRNAs acting on different biological pathways relevant to the pathogenesis of a particular disease, or different miRNAs acting together on a single biological pathway or system. In support of the latter, the same group that published this study also recently reported the role of miR-378a-5p using a similar series of samples and experiments.10 Essentially, they showed that miR-378-5p was also downregulated in preeclamptic placental tissue compared with controls, and that the function and mechanism was to target the 3’-untranslated region of Nodal to repress Nodal-induced repression of trophoblast growth and invasion. Also, Zhu and colleagues11 found dysregulation of 34 miRNAs in placentas from women with preeclampsia; one of the differentially regulated miRNAs was miR195. More recently, Bai et al12 confirmed downregulation of miR-195 and demonstrated that ActRIIA, the type II receptor for ActivinA and Nodal, is a target of miR-195/miR195. Thus, there is likely to be complex interplay and regulation of different miRNAs species that impact on pathways relevant to trophoblast function, and endothelial function and the pathogenesis of preeclampsia. A systems approach to address this would clearly be warranted.

Preeclampsia affects between 2% and 7% of pregnant women, and despite years of ongoing research, the pathogenesis of the disorder remains incompletely understood. One of the most consistently described features of the condition are reduced levels of angiogenic factors such as vascular endothelial growth factor (VEGF) compared with normal pregnancy, in part, because of presence of a soluble form of the VEGF receptor (sFlt-1), and possibly triggered by placental hypoxia. Another important factor associated with the pathogenesis of preeclampsia is soluble endoglin, which acts as a TGF-β antagonist. The finding by Fu and colleagues3 that TGF-β signaling can also be altered through miR-376c and its actions on Nodal is in line with the overall concept of preeclampsia being a disorder of impaired vasculogenesis and provides an explanation at the level of gene transcription.

To establish miR-376c as a predictive or diagnostic biomarker of preeclampsia, the study by Fu and colleagues3 requires confirmation in independent and larger cohorts. Already at this stage, however, it provides a better understanding of the processes leading to impaired trophoblast invasion.
in preeclampsia. Even if the study by Fu et al elegantly demonstrated dysregulation of miR-376c in plasma samples from early pregnancy, it remains unclear whether miR-376c expression was downregulated before pregnancy, and whether it remains downregulated in vascular tissues after pregnancy. In the light of the key role of TGF-β signaling in a wide range of conditions, including cardiovascular and renal diseases\(^{12}\) and the increased cardiovascular risk of women with a history of preeclampsia,\(^{13}\) it will be important to study whether dysregulation of TGF-β targeting miRNAs provides a link between preeclampsia and other vascular diseases.

Sources of Funding

A.H.B. is supported by the British Heart Foundation Chair of Translational Cardiovascular Sciences and C.D. is supported by the European Commission collaborative project “EU-MASCARA.”

Disclosures

None.

References

Is MicroRNA-376c a Biomarker or Mediator of Preeclampsia?
Andrew H. Baker and Christian Delles

Hypertension. 2013;61:767-769; originally published online February 19, 2013;
doi: 10.1161/HYPERTENSIONAHA.111.00087
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/61/4/767

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/