Antihypertensive Inorganic Nitrate and Nitrite: What Is the Underlying Mechanism?

To the Editor:

L-Arginine, organic nitrates such as nitroglycerin, inorganic nitrate (NO$_3^-$), and inorganic nitrite (NO$_2^-$) are precursors of nitric oxide (NO), a potent vasodilator and blood pressure–lowering molecule. How NO is released from nitroglycerin, NO$_3^-$, and NO$_2^-$ is incompletely understood. Ghosh et al1 reported that erythrocytic xanthine oxidoreductase (XOR) plays a crucial role in lowering blood pressure in hypertensives by abolishing the inhibitory action of ADMA on NO synthase activity. Reduction of oxidative stress by allopurinol has been proposed as a mechanism explaining the decrease of circulating ADMA seen on oral administration. Yet, allantoin is not a potent vasodilator and blood pressure–lowering molecule. How NO related dysfunctions4 by abolishing the inhibitory action of ADMA on NO synthase activity. Allopurinol decreases significantly the concentration of cirulating asymmetrical dimethylarginine (ADMA),3 an endogenous inhibitor of NO synthase. Thus, allopurinol may normalize endothelial dysfunction4 by abolishing the inhibitory action of ADMA on NO synthase activity. Reduction of oxidative stress by allopurinol has been proposed as a mechanism explaining the decrease of circulating ADMA seen on oral administration.3 Yet, allantoin is not a reliable oxidative stress biomarker, because allopurinol inhibits XOR-induced formation of uric acid,5 the precursor of allantoin. In plasma and urine of patients with peripheral arterial occlusive disease, we did not find any correlation between ADMA and the oxidative stress biomarkers malondialdehyde and 15(S)-8-iso-prostaglandin F$_{2\alpha}$ (Figure). This suggests that allopurinol is unlikely to reduce circulating ADMA concentration by decreasing oxidative stress. NO$_3^-$ and NO$_2^-$ are emerging experimental drugs for the treatment of NO-related dysfunctions. The mechanisms by which NO$_3^-$, NO$_2^-$, and nitroglycerin are reduced to NO are unresolved, and their resolution provides a challenging task.

Disclosures

None.

Dimitrios Tsikas
Jessica Y. Schneider
Jürgen C. Fröhlich
Institute of Clinical Pharmacology
Hannover Medical School
Hannover, Germany

Figure. Relationship between malondialdehyde (MDA) or 15(S)-8-iso-prostaglandin F$_{2\alpha}$ (15(S)-8-iso-PGF$_{2\alpha}$) and asymmetrical dimethylarginine (ADMA) in plasma (A) and between 15(S)-8-iso-PGF$_{2\alpha}$ and ADMA in urine (B) of 40 patients with peripheral arterial occlusive disease. MDA, 15(S)-8-iso-PGF$_{2\alpha}$, and ADMA were measured by GC-MS/MS (gas chromatography-mass spectrometry-mass spectrometry).
Antihypertensive Inorganic Nitrate and Nitrite: What Is the Underlying Mechanism?
Dimitrios Tsikas, Jessica Y. Schneider and Jürgen C. Fröhlich

Hypertension. 2013;62:e6; originally published online June 10, 2013;
doi: 10.1161/HYPERTENSIONAHA.113.01646

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/62/2/e6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published
in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial
Office. Once the online version of the published article for which permission is being requested is located,
click Request Permissions in the middle column of the Web page under Services. Further information about
this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/