Antihypertensive Inorganic Nitrate and Nitrite: What Is the Underlying Mechanism?

To the Editor:
L-Arginine, organic nitrates such as nitroglycerin, inorganic nitrate (NO\textsubscript{3}−), and inorganic nitrite (NO\textsubscript{2}−) are precursors of nitric oxide (NO), a potent vasodilator and blood pressure–lowering molecule. How NO is released from nitroglycerin,1 NO\textsubscript{3}−, and NO\textsubscript{2}− is incompletely understood. Ghosh et al2 reported that erythrocytic xanthine oxidoreductase (XOR) plays a crucial role in lowering blood pressure in hypertensives as it releases NO\textsubscript{3} from nitroglycerin,1 NO\textsubscript{3}−, and NO\textsubscript{2}− is a potent vasodilator and blood pressure–lowering molecule. How NO\textsubscript{3}− is released from nitroglycerin,1 NO\textsubscript{3}−, and NO\textsubscript{2}− is incompletely understood. XOR is unlikely to generate NO from NO\textsubscript{2}− in erythrocytes.

Allopurinol is frequently used to support XOR involvement in various processes. Yet, the action of allopurinol is not restricted to XOR. Allopurinol decreases significantly the concentration of circulating asymmetric dimethylarginine (ADMA),3 an endogenous inhibitor of NO synthase.4 Thus, allopurinol may normalize endothelial dysfunction5 by abolishing the inhibitory action of ADMA on NO synthase activity. Reduction of oxidative stress by allopurinol has been proposed as a mechanism explaining the decrease of circulating ADMA seen on allopurinol administration.6 Yet, allantoin is not a reliable oxidative stress biomarker, because allopurinol inhibits XOR-induced formation of uric acid,7 the precursor of allantoin. In plasma and urine of patients with peripheral arterial occlusive disease, we did not find any correlation between ADMA and the oxidative stress biomarkers malondialdehyde and 15(S)-8-iso-prostaglandin F\textsubscript{2α} (Figure). This suggests that allopurinol is unlikely to reduce circulating ADMA concentration by decreasing oxidative stress.

NO\textsubscript{3}− and NO\textsubscript{2}− are emerging experimental drugs for the treatment of NO-related dysfunctions. The mechanisms by which NO\textsubscript{3}−, NO\textsubscript{2}−, and nitroglycerin are reduced to NO are unresolved, and their resolution provides a challenging task.

Disclosures

None.

Dimitrios Tsikas
Jessica Y. Schneider
Jürgen C. Frölich
Institute of Clinical Pharmacology
Hannover Medical School
Hannover, Germany

2. Ghosh SM, Kapil V, Fuentes-Calvo I, Bubb KJ, Pearl V, Millsom AB, Khanhata R, Maleki-Toyserkani S, Youssif M, Benjamin N, Webb AJ, Caulfield MJ, Hobbs AJ, Ahluwalia A. Enhanced vasodilator activity of NO\textsubscript{3}−, NO\textsubscript{2}− and ADMA was measured by GC-MS/MS (gas chromatography-mass spectrometry-mass spectrometry).
Antihypertensive Inorganic Nitrate and Nitrite: What Is the Underlying Mechanism?
Dimitrios Tsikas, Jessica Y. Schneider and Jürgen C. Fröhlich

Hypertension. 2013;62:e6; originally published online June 10, 2013;
doi: 10.1161/HYPERTENSIONAHA.113.01646

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/62/2/e6

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/