Hypertensive Retinopathy

Hypertensive Retinopathy and Risk of Stroke

Yi-Ting Ong, Tien Y. Wong, Ronald Klein, Barbara E.K. Klein, Paul Mitchell, A. Richey Sharrett, David J. Couper, M. Kamran Ikram

See Editorial Commentary, pp 678–679

Abstract—Although assessment of hypertensive retinopathy signs has been recommended for determining end-organ damage and stratifying vascular risk in persons with hypertension, its value remains unclear. In this study, we examine whether hypertensive retinopathy predicts the long-term risk of stroke in those with hypertension. A total of 2907 participants with hypertension aged 50 to 73 years at the 1993 to 1995 examination, who had gradable retinal photographs, no history of diabetes mellitus, stroke, and coronary heart disease at baseline and data on incident stroke, were included from the Atherosclerosis Risk in Communities (ARIC) Study. Retinal photographs were assessed for hypertensive retinopathy signs and classified as none, mild, and moderate/severe. Incident events of any stroke, cerebral infarction, and hemorrhagic stroke were identified and validated. After a mean follow-up period of 13.0 years, 165 persons developed incident stroke (146 cerebral infarctions and 15 hemorrhagic strokes). After adjusting for age, sex, blood pressure, and other risk factors, persons with moderate hypertensive retinopathy were more likely to have stroke (moderate versus no retinopathy: multivariable hazard ratios, 2.37 [95% confidence interval, 1.39–4.02]). In participants with hypertension on medication with good control of blood pressure, hypertensive retinopathy was related to an increased risk of cerebral infarction (mild retinopathy: hazard ratio, 1.96 [95% confidence interval, 1.09–3.55]; and moderate retinopathy: hazard ratio, 2.98 [95% confidence interval, 1.01–8.83]). Hypertensive retinopathy predicts the long-term risk of stroke, independent of blood pressure, even in treated patients with hypertension with good hypertension control. Retinal photographic assessment of hypertensive retinopathy signs may be useful for assessment of stroke risk. (Hypertension. 2013;62:706-711.) • Online Data Supplement

Key Words: cerebral infarction ■ hypertension ■ hypertensive retinopathy ■ stroke

Despite the overwhelming evidence that hypertension represents the first risk factor for stroke and that prevention of stroke benefits the most from blood pressure lowering,1-3 it still remains difficult to predict among those with hypertension who will develop a stroke. Therefore, it is still pertinent to unravel other risk factors or signs that may provide additional information.

A fundus (retinal) examination to determine the presence and severity of retinopathy signs has been recommended as a means to determine the presence of end-organ damage in persons with hypertension and to stratify risk.4-6 However, the value of a retinal examination remains unclear because different classifications of hypertensive retinopathy (eg, Keith Wagner Barker classification) are difficult to use in clinical practice,7 and a clinical ophthalmoscopic examination has low reliability and reproducibility.8 Although a more simplified hypertensive retinopathy system (mild, moderate, and severe) has been proposed,8 its use in predicting end-organ damage has not been validated.

Furthermore, it has been suggested that retinal photography, widely available in primary clinics, hospitals, and even in the community (eg, optical shops), may be a more precise means to document retinopathy signs.9 Recent studies have shown that retinopathy signs are related to the risk of stroke,10-16 including MRI-defined cerebral infarcts, incident clinical stroke, ischemic strokes, and symptomatic and subclinical silent lacunar infarcts in healthy populations,12,14-16 and subsequent vascular events in persons who have an acute stroke.17 However, a major gap in the literature is whether the simplified hypertensive retinopathy classification is predictive of stroke among subjects with hypertension.

Received March 18, 2013; first decision March 30, 2013; revision accepted July 9, 2013.

From the NUS Graduate School for Integrative Sciences and Engineering (Y.-T.O), and Memory, Aging, & Cognition Centre (M.K.I.), National University of Singapore, Singapore; Department of Ophthalmology (Y.-T.O., T.Y.W., M.K.I.), and Singapore Eye Research Institute (T.Y.W., M.K.I.), Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia (T.Y.W.); Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI (R.K., B.E.K.K.); Department of Ophthalmology and Westmead Millennium Institute, Centre for Vision Research, University of Sydney, Sydney, Australia (P.M.); Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (A.R.S.); Department of Biostatistics, University of North Carolina, Chapel Hill, NC (D.J.C.); and Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands (M.K.I.).

The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA.113.01414/-/DC1.

Correspondence to M. Kamran Ikram, National University Health System, 1E Kent Ridge Rd, NUHS Tower Block, Level 7, Department of Ophthalmology, Singapore 119228. E-mail kamran_ikram@nuhs.edu.sg

© 2013 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org

DOI: 10.1161/HYPERTENSIONAHA.113.01414
In this article, we examined in a cohort of persons with hypertension (without diabetes mellitus) the relationship between hypertensive retinopathy signs and long-term risk of stroke, its major subtype cerebral infarction, and whether this relationship is independent of hypertensive medication use and blood pressure control.

Methods

Study Population

The Atherosclerosis Risk in Communities (ARIC) Study is a population-based study that included 15,792 participants aged 44 to 66 years from 1986 to 1990.18 Our study cohort consists of individuals who participated at the third examination (1993–1996), aged 49 to 73 years, when retinal photography was performed. Response rates of participants from the first to third examination have been previously reported.19 Of the 12,887 individuals who participated at the third examination, a total of 2,907 participants with prevalent hypertension, with no prevalent stroke or coronary heart disease, without diabetes mellitus at the time of retinal photography, and who had gradable retinal photographs were included in this study (Figure). Approval was given by Institutional Review Boards at each study site, and informed consent was obtained from all participants.

Assessment of Hypertensive Retinopathy

Retinal photography and the grading procedure have been documented elsewhere.19 Briefly, a 45° nonmydriatic retinal photograph centered on the region of the optic disc, and macula was taken from 1 randomly selected eye after 5 minutes of dark adaptation. Trained graders masked to participant characteristics and clinical status evaluated photographs for the presence of retinopathy signs. Retinopathy signs were evaluated without assumption of cause, noting the following findings: retinal hemorrhages (blot and flame shaped), microaneurysms, soft exudates, hard exudates, macular edema, intraretinal microvascular abnormalities, venous beading, new vessels at the disc or elsewhere, vitreous hemorrhage, disc swelling, and laser photocoagulation scars.14 Generalized arteriolar narrowing was determined as those with a central retinal arteriolar equivalent in the lowest quintile of the entire cohort (central retinal arteriolar equivalent <148.7 micrometers). The reliability coefficient (for retinal arteriolar and venular caliber) and κ statistics (for retinal lesions) within and between graders ranged between 0.61 and 1.00.19 Severity of hypertensive retinopathy was defined as none, mild, moderate, and severe, as described previously (Table 1; Figure S1 in the online-only Data Supplement for examples).6

Assessment of Incident Stroke and Subtypes

Ascertainment and classification of stroke in ARIC has been previously described.20 Information about stroke events was obtained through annual follow-up telephone interviews, identifying hospitalizations and deaths in the previous year, and by reviewing local hospital discharge lists and death certification from state statistics offices.20 A hospitalization was considered eligible for possible validation as a stroke if it contained a discharge diagnosis code of cerebrovascular disease (International Classification of Diseases, Ninth Revision, Clinical Modification codes 430–438). Out-of-hospital deaths coded as fatal strokes in the death certificate were also identified, but not validated and therefore excluded.

When a potential stroke was identified, a trained nurse was sent to abstract hospital records. Each eligible case was classified by a computer algorithm and independently classified by an expert physician-reviewer. Disagreements between the 2 were adjudicated by a second physician-reviewer. Details on quality assurance are presented elsewhere.20

For this analysis, incident stroke is defined to include only strokes that occurred between the time of retinal photography in 1993 to 1995 and December 31, 2008. These are categorized as cerebral infarctions (thrombotic or embolic brain infarction) or hemorrhagic strokes (subarachnoid or intracerebral hemorrhage).14

Definition of Hypertension and Blood Pressure

Hypertension and use of antihypertensive medication were ascertained from examiner-ascertained questionnaires at the third examination (1993–1996). Blood pressures were taken with a random-zero sphygmomanometer, and the mean of the last 2 of 3 measurements at each visit was used for analyses. Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg at the third examination. Subjects on medication who had systolic and diastolic blood pressures <140 and 90 mm Hg, respectively, at the third examination were considered to have good control of their hypertension, whereas those with systolic or diastolic blood pressures >140 and 90 mm Hg, respectively, were considered to have poor control of hypertension. Mean arterial blood pressure was computed as 2/3 of the diastolic blood pressure plus 1/3 of the systolic blood pressure.

Definition of Cardiovascular Risk Factors

Participants underwent standardized evaluations of cardiovascular risk factors at each examination. The following variables included in this study were assessed during the third examination. History of diabetes mellitus, cigarette smoking, alcohol consumption, and use of antidiabetic medication were ascertained from examiner-administered examiner-ascertained questionnaires at the third examination (1993–1996). Blood pressures were taken with a random-zero sphygmomanometer, and the mean of the last 2 of 3 measurements at each visit was used for analyses. Hypertension was defined as systolic blood pressure ≥140 mm Hg, diastolic blood pressure ≥90 mm Hg at the third examination. Subjects on medication who had systolic and diastolic blood pressures <140 and 90 mm Hg, respectively, at the third examination were considered to have good control of their hypertension, whereas those with systolic or diastolic blood pressures >140 and 90 mm Hg, respectively, were considered to have poor control of hypertension. Mean arterial blood pressure was computed as 2/3 of the diastolic blood pressure plus 1/3 of the systolic blood pressure.

Table 1. Classification of Hypertensive Retinopathy

<table>
<thead>
<tr>
<th>Grades</th>
<th>Retinal Signs</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>No detectable signs</td>
</tr>
<tr>
<td>Mild</td>
<td>Presence of generalized arteriolar narrowing (first quintile of CRAE), focal arteriolar narrowing, arteriovenous nicking, or a combination</td>
</tr>
<tr>
<td>Moderate</td>
<td>Presence of blot, or flame-shaped hemorrhage, microaneurysm, soft exudates, or a combination of these signs</td>
</tr>
<tr>
<td>Severe</td>
<td>Presence of moderate hypertensive retinopathy signs; and optic disc swelling</td>
</tr>
</tbody>
</table>

CRAE indicates central retinal arteriolar equivalent.
questionnaires. Diabetes mellitus was defined as fasting blood glucose ≥126 mg/dL or a self-reported history of treatment for diabetes mellitus, and diabetic participants were excluded from our analysis. Fasting blood samples were collected and processed for total cholesterol, HDL-cholesterol, triglycerides, and glucose.21 Height and weight were measured for calculation of body mass index.

Statistical Analysis
Cox proportional hazard models were used to calculate hazard ratio (HR) and 95% confidence intervals (CI) for stroke by severity of hypertensive retinopathy. Participants were followed up from the time of retinal photography to the stroke event, death, last contact, or December 31, 2008, whichever came first. Kaplan–Meier failure curves were constructed for incident stroke by hypertensive retinopathy classification. We initially adjusted for age, sex, and race-center categories, and additionally for mean arterial blood pressure (mm Hg) at third examination (forming the baseline for the present study), fasting glucose, total cholesterol and triglyceride levels (mg/dL), body mass index (kg/m²), cigarette smoking, and alcohol consumption. Analyses were repeated, stratifying for use of hypertension-lowering medications. Proportional hazard assumptions were tested using Kaplan–Meier and predicted survival plots, and Schoenfeld residuals. Cox proportional hazard models were used to calculate hazard ratio (HR) and 95% confidence intervals (CI) for stroke by severity of hypertensive retinopathy: HR, 2.20 [95% CI, 1.11–4.37] for stroke and HR, 1.39 [95% CI, 0.91–2.11] for cerebral infarction. Adjusted Cox regression models passed tests for proportional hazard assumptions. Furthermore, goodness-of-fit when evaluated using Cox-Snell residuals demonstrated reasonable fit with the data.

Results
Among the 2907 subjects, the most common sign of hypertensive retinopathy (excluding generalized arteriolar narrowing) was focal arteriolar narrowing (22.3% [95% CI, 20.8%–23.8%]), arteriovenous nicking (17.5% [95% CI, 16.1%–18.9%]), and other retinopathy signs (5.1% [95% CI, 4.3%–5.9%]), which included microaneurysms, soft exudates, blot hemorrhages, and flame-shaped hemorrhages. A total of 1406 subjects (48.4% [95% CI, 46.5%–50.2%]) had none, 1354 (46.6% [95% CI, 44.8%–48.4%]) had mild, 146 (5.0%) had moderate, and 1 subject had severe hypertensive retinopathy. Because only 1 participant had severe hypertensive retinopathy, the participant was included into the moderate hypertensive retinopathy group (5.1% [95% CI, 4.3%–5.9%]). Table 2 presents baseline characteristics of the subjects according to severity of hypertensive retinopathy.

After a mean follow-up period of 13.0 years, there were 165 incident strokes, of which 146 were cerebral infarctions and 15 were hemorrhagic strokes. The incidence of stroke events for the whole population was 0.436 (95% CI, 0.42–0.45) per 100 person-years, 0.322 (95% CI, 0.305–0.339) per 100 person-years for the group with no retinopathy, and 0.493 (95% CI, 0.466–0.519) per 100 person-years and 1.073 (95% CI, 0.899–1.246) per 100 person-years for the group with mild and moderate hypertensive retinopathy, respectively.

Kaplan–Meier failure curves constructed for incident stroke by hypertensive retinopathy classification (Figure S2) suggested that there was a significant difference in risk of stroke in the 3 groups because pairwise Mantel–Cox Log Rank comparisons were all significant (P<0.05). Table 3 shows that in persons with hypertension, increasing severity of hypertensive retinopathy was associated with an increased risk of incident stroke, including cerebral infarction. Adjusted Cox regression models passed tests for proportional hazard assumptions. Furthermore, goodness-of-fit when evaluated using Cox-Snell residuals demonstrated reasonable fit with the data.

To assess whether hypertensive retinopathy was similarly associated with incident stroke during longer periods of time, we censored persons who had strokes within 5 years after retinal photography and found that HRs estimated from the multivariate model remained relatively unchanged for both incident stroke and cerebral infarction (mild hypertensive retinopathy: HR, 1.39 [95% CI, 0.91–2.11] for stroke and HR, 1.68 [95%, CI, 1.06–2.64] for cerebral infarction; moderate hypertensive retinopathy: HR, 2.20 [95% CI, 1.11–4.37] for stroke and HR, 2.46 [95% CI, 1.18–5.10] for cerebral infarction).

Table 2. Hypertensive Participant Characteristics According to Retinopathy Grade

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>None (n=1406, 48.4%)</th>
<th>Mild (n=1354, 46.6%)</th>
<th>Moderate/Severe (n=147, 5.1%)</th>
<th>P Value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y (SD)</td>
<td>59.9 (5.6)</td>
<td>61.0 (5.7)</td>
<td>60.2 (6.1)</td>
<td>0.559</td>
</tr>
<tr>
<td>Men, n (%)</td>
<td>525 (37.3)</td>
<td>582 (43.0)</td>
<td>67 (45.6)</td>
<td>0.004</td>
</tr>
<tr>
<td>Blacks, n (%)</td>
<td>475 (33.8)</td>
<td>320 (23.6)</td>
<td>76 (51.7)</td>
<td><0.001</td>
</tr>
<tr>
<td>Systolic blood pressure, mmHg (SD)</td>
<td>133.6 (18.5)</td>
<td>140.4 (18.4)</td>
<td>142.5 (24.5)</td>
<td><0.001</td>
</tr>
<tr>
<td>Diastolic blood pressure, mmHg (SD)</td>
<td>75.9 (10.5)</td>
<td>78.9 (10.7)</td>
<td>79.9 (13.1)</td>
<td><0.001</td>
</tr>
<tr>
<td>Blood glucose, mg/dL (SD)</td>
<td>100.3 (10.4)</td>
<td>100.2 (10.6)</td>
<td>98.8 (9.7)</td>
<td>0.564</td>
</tr>
<tr>
<td>Body mass index, kg/m² (SD)</td>
<td>29.5 (5.6)</td>
<td>29.6 (5.8)</td>
<td>29.1 (5.9)</td>
<td>0.435</td>
</tr>
<tr>
<td>Total cholesterol, mg/dL (SD)</td>
<td>209.8 (36.2)</td>
<td>207.3 (37.1)</td>
<td>208.0 (38.1)</td>
<td>0.557</td>
</tr>
<tr>
<td>HDL-cholesterol, mg/dL (SD)</td>
<td>52.8 (17.7)</td>
<td>52.7 (18.3)</td>
<td>54.5 (19.0)</td>
<td>0.596</td>
</tr>
<tr>
<td>Total triglyceride, mg/dL (SD)</td>
<td>145.0 (84.4)</td>
<td>143.5 (83.1)</td>
<td>133.5 (73.1)</td>
<td>0.111</td>
</tr>
<tr>
<td>Cigarette smoking, ever, n (%)</td>
<td>774 (55.0)</td>
<td>760 (56.1)</td>
<td>77 (52.4)</td>
<td>0.639</td>
</tr>
<tr>
<td>Alcohol use, ever, n (%)</td>
<td>1011 (71.9)</td>
<td>1012 (74.7)</td>
<td>102 (69.4)</td>
<td>0.142</td>
</tr>
<tr>
<td>Incident stroke, n (%)</td>
<td>60 (4.3)</td>
<td>86 (6.4)</td>
<td>19 (12.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Incident cerebral infarction, n (%)</td>
<td>51 (3.6)</td>
<td>81 (6.0)</td>
<td>14 (9.5)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

For continuous variables, P values were evaluated from linear regression models by assuming retinopathy status as a 3-level numeric variable for unweighted means, whereas for categorical variables, values quoted are from a χ² test of trend. HDL indicates high-density lipoprotein.

*P value for trend.
Finally, we examined the association between hypertensive retinopathy and stroke in persons using antihypertensive medications (Table S1). We found that despite having good control of hypertension as defined by blood pressure levels at the time of the retinal examination, those with mild (HR, 1.96 [95% CI, 1.09–3.55]) and moderate hypertensive retinopathy (HR, 2.98 [95% CI, 1.01–8.83]) were at an increased risk of cerebral infarction. Additionally, interaction terms testing for interaction between hypertensive retinopathy grade and use of antihypertensive medication, or good control of hypertension were not significant.

Discussion
In this population-based study, we found that in persons with hypertension but without diabetes mellitus, hypertensive retinopathy was associated with stroke risk, suggesting that the presence of these retinal microvascular changes is indicative of additional vascular risk beyond that conferred by traditional cardiovascular risk factors.

Histopathology of Vascular Lesions in retina and Brain
Histopathologic studies suggest that these hypertensive retinopathy lesions result from small vessel arteriolosclerosis, and continued elevated blood pressure results in retinal ischemia and breakdown of the blood–retina barrier. They parallel hypertensive microvascular changes described in the brain, such as concentric thickening of the arterial wall, intimal thickening, medial hyperplasia, and increased vessel permeability attributable to blood–brain barrier breakdown, suggesting that retinal photography is a potential clinical tool to indirectly assess potential microvascular damage in the cerebral vasculature.

Hypertensive Retinopathy Classifications
Several attempts have been made to devise a classification system for retinopathy signs, and studies have related these signs to cardiovascular diseases and mortality. However, they are limited for several reasons. First, because they involved patients who had uncontrolled or untreated hypertension, generalization to contemporary populations of patients with lower blood-pressure levels may be problematic. Second, in studies performed up to the 20th century, retinopathy was defined using only direct ophthalmoscopic examination. This technique is subject to high interobserver variability. Third, although many earlier studies cite increased mortality among persons with hypertensive retinopathy, few have demonstrated associations between hypertensive retinopathy and specific cardiovascular outcomes, such as incident stroke, or have adequately controlled for relevant confounding factors. More recent population-based studies have adopted retinal photography and standardized protocols for the assessment of retinopathy signs. Using these procedures, several studies have shown that retinal microvascular changes, including retinopathy signs, are related to subclinical and clinical cerebrovascular pathology. However, these studies have mainly examined general elderly populations.

Possible Clinical Implications
In the present study, we focused on subjects with hypertension and found within this group that those with mild and moderate hypertensive retinopathy were at an additional increased risk of developing a stroke. Our current data suggest that within those who have hypertension, fundus examination may potentially provide additional information on long-term stroke risk stratification. The simplified 3-grade classification we used is easily implementable in both clinical and research settings with access to fundus examination procedures.

Furthermore, clinical guidelines strongly recommend that lowering blood pressure can lead to significant reduction of stroke risk; however, our findings suggest that despite having good control of blood pressure, patients with hypertensive retinopathy are at an increased risk of stroke. This suggests that closely monitoring blood pressures and medication compliance may not be sufficient for stroke prevention in patients with hypertension. Retinal assessment may be useful especially in those with good control of hypertension.

Methodological Considerations
Because hypertensive retinopathy is difficult to distinguish from diabetic retinopathy in patients with both comorbidities, with the actual cause of present retinopathy signs undeterminable, we excluded participants with hypertension who had diabetes mellitus in our analyses. Because persons with a previous history of coronary heart disease may already be at an increased risk of stroke, including these subjects may confound the association between hypertensive retinopathy and incident stroke. Therefore, participants with coronary heart disease at baseline were excluded, which resulted in a smaller sample size and wider CIs in the current study. Because we did not have detailed information on other cardiovascular factors, with access to fundus examination procedures, several studies have shown that retinal microvascular changes, including retinopathy signs, are related to subclinical and clinical cerebrovascular pathology. However, these studies have mainly examined general elderly populations.

Table 3. Hazard Ratios (95% Confidence Intervals) for Stroke and Cerebral Infarction by Severity of Hypertensive Retinopathy Grades

<table>
<thead>
<tr>
<th>Hypertensive Retinopathy Grades</th>
<th>Unadjusted Stroke (n=165)</th>
<th>Cerebral Infarction (n=146)</th>
<th>Model 1* Stroke (n=165)</th>
<th>Cerebral Infarction (n=146)</th>
<th>Model 2† Stroke (n=165)</th>
<th>Cerebral Infarction (n=146)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None (1406)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Mild (1354)</td>
<td>1.53 (1.10–2.13)</td>
<td>1.70 (1.20–2.41)</td>
<td>1.50 (1.07–2.09)</td>
<td>1.67 (1.17–2.38)</td>
<td>1.35 (0.96–1.89)</td>
<td>1.52 (1.06–2.19)</td>
</tr>
<tr>
<td>Moderate/severe (147)</td>
<td>3.36 (2.00–5.63)</td>
<td>2.86 (1.59–5.17)</td>
<td>2.71 (1.61–4.56)</td>
<td>2.29 (1.26–4.15)</td>
<td>2.37 (1.39–4.02)</td>
<td>2.01 (1.10–3.70)</td>
</tr>
</tbody>
</table>

*Adjusted for age, sex, and race-center.
†Adjusted for age, sex, race-center, mean arterial blood pressure, fasting blood glucose, high-density lipoprotein cholesterol, triglyceride levels (mg/dL), body mass index (kg/m²), cigarette smoking, and alcohol consumption.
disease subtypes, we were unable to fully account for their confounding effect on the association between hypertensive retinopathy and the risk of stroke. We used a 45° nonstereoscopic fundus photograph taken through the nondilated pupil of 1 eye, making retinopathy grading more variable. Unilateral retinopathy would be missed if the more involved eye was not examined. However, this misclassification of retinopathy is likely to be independent of a person developing a stroke and, thus, would result in bias toward the null, suggesting that the true association may be stronger. Because of the small number of hemorrhagic strokes, we could not examine the association with this subtype. Furthermore, because blood pressure measurements were not obtained from participants after the examination visit in which retinal photography was performed, we could not adjust for blood pressure during the follow-up period. Several strengths of the current study include a large sample of subjects with hypertension, long follow-up for period of stroke, and standardized procedures for the assessment of retinopathy.

Perspectives
Among persons with hypertension without diabetes mellitus, hypertensive retinopathy is associated with an increased long-term risk of stroke, independent of other vascular risk factors. Furthermore, among those who have seemingly good control of hypertension, persons with hypertensive retinopathy are nevertheless at an increased risk of developing cerebral infarction. These findings suggest that a retinal examination may be valuable for the assessment of stroke risk in patients with hypertension.

Acknowledgments
We thank the staff and participants of the ARIC study for their important contributions.

Sources of Funding
The Atherosclerosis Risk in Communities Study is performed as a collaborative study supported by National Heart, Lung, and Blood Institute contracts (HHSN26820110005C, HHSN26820110006C, HHSN26820110007C, HHSN26820110008C, HHSN26820110009C, HHSN26820110010C, HHSN26820110011C, and HHSN26820110012C). Dr Ikram received additional funding from the Singapore Ministry of Education Academic Research Fund (Tier 1 WBS-R-191-000-014-112) and the Singapore Ministry of Health’s National Medical Research Council (NMRC/CSA038/2013). The funding sources had no role in this study.

Disclosures
None.

References

Novelty and Significance

What Is New?

- Hypertensive retinopathy is associated with an increased long-term risk of stroke and cerebral infarction, independent of vascular risk factors in persons with hypertension.

What Is Relevant?

- Hypertensive retinopathy in persons on medication with seemingly good control of blood pressure was nevertheless at an increased risk of developing cerebral infarction.

Summary

Hypertensive retinopathy predicts long-term risk of stroke and cerebral infarction in hypertensives, independent of traditional risk factors.
Hypertensive Retinopathy and Risk of Stroke
Yi-Ting Ong, Tien Y. Wong, Ronald Klein, Barbara E.K. Klein, Paul Mitchell, A. Richey Sharrett, David J. Couper and M. Kamran Ikram

Hypertension. 2013;62:706-711; originally published online August 12, 2013;
doi: 10.1161/HYPERTENSIONAHA.113.01414

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/62/4/706

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2013/08/12/HYPERTENSIONAHA.113.01414.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

Hypertensive Retinopathy and Risk of Stroke

Yi-Ting Ong1,2, Tien Y. Wong2,3,4, Ronald Klein5, Barbara E.K. Klein5, Paul Mitchell6, A. Richey Sharrett7, David J. Couper8, M. Kamran Ikram2,3,9

1. NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
2. Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
3. Singapore Eye Research Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
4. Centre for Eye Research Australia, University of Melbourne, Melbourne, Australia
5. Department of Opthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
6. Department of Ophthalmology and Westmead Millennium Institute, Centre for Vision Research, University of Sydney, Sydney, Australia
7. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
8. Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
9. Department of Ophthalmology, Erasmus Medical Center, Rotterdam, the Netherlands

Corresponding Author:

M. Kamran Ikram, MD PhD

National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 7, Department of Ophthalmology, Singapore 119228; E-mail: kamran_ikram@nuhs.edu.sg; Phone: +65 8126 1594; Fax: +65 6323 1903
Table S1: Hazard ratios (95% confidence intervals) for stroke and cerebral infarction by severity of hypertensive retinopathy grade for participants on hypertension-lowering medication.

<table>
<thead>
<tr>
<th>Hypertensive Retinopathy Grade</th>
<th>Use of Anti-hypertensive medication</th>
<th>On medication and good control*</th>
<th>On medication and always good control†</th>
<th>On medication and poor control‡</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N (n=116)</td>
<td>Stroke (n=58)</td>
<td>Cerebral infarction (n=51)</td>
<td>Stroke (n=44)</td>
</tr>
<tr>
<td>None</td>
<td>1084</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
<td>1.00 (ref)</td>
</tr>
<tr>
<td>Mild</td>
<td>917</td>
<td>1.55 (0.83-1.87)</td>
<td>1.62 (0.94-2.80)</td>
<td>1.96 (1.09-3.55)</td>
</tr>
<tr>
<td>Moderate/Severe</td>
<td>102</td>
<td>2.94 (1.61-5.38)</td>
<td>2.67 (1.33-5.35)</td>
<td>2.25 (0.77-6.55)</td>
</tr>
</tbody>
</table>

All models are adjusted for age, sex, race-center, mean arterial blood pressure, fasting blood glucose, HDL-cholesterol, triglyceride levels (mg/dL), body mass index (kg/m²), cigarette smoking and alcohol consumption.

* On medication and good control defined as hypertensive participants on medication with systolic and diastolic blood pressures below 140mmHg and 90mmHg respectively at retinal examination.
† On medication and always good control defined as hypertensive participants on medication with systolic and diastolic blood pressures below 140mmHg and 90mmHg respectively at all 3 visits over 6 years.
‡ On medication and poor control defined as hypertensive participants on medication with systolic or diastolic blood pressures above 140mmHg and 90mmHg respectively at retinal examination.
Figure S1:

Examples of (A) no hypertensive retinopathy; (B) mild hypertensive retinopathy showing focal arteriolar narrowing (black arrow); (C) moderate hypertensive retinopathy showing arterio-venous nicking (black arrow), blot hemorrhages and microaneurysms; (D) moderate hypertensive retinopathy showing soft exudates and arterio-venous nicking (black arrow).
Figure S2:

Kaplan-Meier Failure Curve for Incident Stroke Events by Hypertensive Retinopathy Classification

Kaplan-Meier failure curve of cumulative hazards of stroke by severity of hypertensive retinopathy against follow-up time (years) in participants with hypertension but without diabetes.