Letters to the Editor will be published, if suitable, as space permits. They should not exceed 500 words (typed double-spaced) plus 5 references in length and may be subject to editing or abridgment.

Response to A New Exercise Central Hemodynamics Paradigm: Time for Reflection or Expansion?

We thank Drs Heffernan and Lefferts1 for their interesting comments and request to expand on the implications of the late-systolic forward decompression (suction) wave (FDW) during exercise. Parker et al2 were the first to suggest that the FDW generated by the left ventricle is related to left ventricular (LV) performance and that wave reflections from the peripheral circulation were less likely to play a dominant role in the modulation of the central blood pressure waveform. Other work has shown that the FDW is closely related to LV mechanics during mid-to-late systole3 and that FDW generation is attributed to LV relaxation and storage of energy in the left ventricle (ie, the same mechanism facilitating early diastolic filling). Notably, the total FDW energy is related to the rate of diastolic relaxation (τ) as well as end-systolic volume4 and correlates closely with peak reverse ejection intraventricular pressure difference.5 It, therefore, seems plausible that the FDW may provide insight into aspects of LV relaxation and filling in addition to late-systolic pressure loadings, as suggested by Drs Heffernan and Lefferts.1

During exercise, aortic pressure is increased (raising LV afterload) and because of elevated heart rate, LV diastolic filling time tends to shorten. Under normal circumstances, the positive lusitropic effects of exercise, and optimization of LV relaxation, would be expected to generate greater late-systolic suction wave energy; as was observed in our data.6 Adding further complexity, the positive inotropy produced to overcome raised LV afterload and maintain adequate stroke volume may compensate a relative reduction in end-systolic volume via the Anrep effect. With all this in mind, the negative relation between FDW intensity and end-systolic pressure observed by Drs Heffernan and Lefferts.1 Notably, the total FDW energy is related to the rate of diastolic relaxation (τ) as well as end-systolic volume4 and correlates closely with peak reverse ejection intraventricular pressure difference.5 It, therefore, seems plausible that the FDW may provide insight into aspects of LV relaxation and filling in addition to late-systolic pressure loadings, as suggested by Drs Heffernan and Lefferts.1

Another interesting aspect of the FDW is evidence showing reduction in magnitude from the carotid to brachial and radial arteries.7 This dissipation occurs to a greater extent than the forward compression wave and is inversely related to vessel diameter. Therefore, FDW intensity is greatest in the aorta, where local suction energy generated by LV relaxation is greatest. Our results show that aortic wave reflection magnitude does not change during exercise, despite large increases in FDW and forward compression wave intensity,8 leading us to conclude that forward propagating waves present in the aorta, that are generated by LV contraction and relaxation forces, are primary contributors to the shape of the exercise central pressure wave form. We agree with the suggestion by Drs Heffernan and Lefferts1 that the FDW has physiological relevance to appropriate ventricular–vascular interaction. Moreover, the accentuation of the FDW with stress induced by exercise underscores the usefulness of exercise as a modality to gain further understanding on the physiology of arterial wave travel.

Disclosures

None.

Response to A New Exercise Central Hemodynamics Paradigm: Time for Reflection or Expansion?

Martin G. Schultz, Justin E. Davies, Phillip Roberts-Thomson, J. Andrew Black, Alun D. Hughes and James E. Sharman

Hypertension. 2013;62:e36; originally published online October 7, 2013;
doi: 10.1161/HYPERTENSIONAHA.113.02142

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/62/5/e36

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/