Metabolic Syndrome and Risk of Incident Peripheral Artery Disease
The Cardiovascular Health Study

Abstract—Prior studies evaluating metabolic syndrome (MetS) and incident peripheral artery disease (PAD) have been limited by use of modified MetS criteria and restriction to clinical PAD end points. We investigated MetS and risk of developing a low ankle-brachial index (ABI) and clinical PAD in the Cardiovascular Health Study, a population-based cohort of adults aged ≥65 years. Participants with MetS met at least 3 of 5 Adult Treatment Panel III criteria. Baseline C-reactive protein-MetS or fibrinogen-MetS were defined as presence of 3 of 6 components, with elevated C-reactive protein (>3 mg/L) or fibrinogen (>341 mg/dL) as a sixth component. Incident low ABI, defined as ABI <0.9 and decline of ≥0.15, was assessed among a subset of 1899 individuals with 2 ABI measurements 6 years apart. Over a median follow-up of 13.7 years, 4632 individuals were followed up for clinical PAD, defined as revascularization or diagnosed claudication. Adult Treatment Panel III MetS was associated with both incident low ABI (risk ratio, 1.26; 95% confidence interval [CI], 1.00–1.58) and clinical PAD (hazard ratio, 1.47; 95% CI, 1.11–1.94). Incorporating C-reactive protein or fibrinogen into Adult Treatment Panel III criteria identified an additional 16% to 20% of individuals as having MetS, and both C-reactive protein-MetS and fibrinogen-MetS were associated with incident low ABI (risk ratio, 1.36; 95% CI, 1.07–1.72 and risk ratio, 1.43; 95% CI, 1.13–1.81, respectively) and clinical PAD (hazard ratio, 1.56; 95% CI, 1.17–2.08 and hazard ratio, 1.55; 95% CI, 1.17–2.07, respectively). Among Adult Treatment Panel III MetS criteria, risk of PAD was most strongly associated with hypertension. (Hypertension. 2014;63:413-419.) • Online Data Supplement

Key Words: cohort studies ■ inflammation ■ metabolic syndrome ■ peripheral artery disease

The metabolic syndrome (MetS) is defined by a combination of criteria including elevated triglycerides, reduced high-density lipoprotein, high blood pressure, impaired fasting glucose, and increased abdominal girth.1–3 Prevalence of the MetS has been consistently associated with incident coronary artery disease, stroke, and cardiovascular mortality.4–7 To our knowledge, there are only 2 published prospective studies evaluating associations of MetS and incident peripheral artery disease (PAD); however, both are limited by the use of clinical PAD alone as an end point.8,9 These studies also used modified MetS criteria by substituting the presence of diabetes mellitus for impaired fasting glucose and body mass index for increased abdominal girth. Given the moderate correlation between atherosclerosis across different vascular beds,10 it remains uncertain whether MetS is similarly associated with PAD.

Atherogenic risk factors such as impaired fibrinolysis, oxidative stress, hypoadiponectinemia, and increased thrombogenicity often cluster with the MetS.11,12 Although traditional definitions of MetS incorporate measures of insulin resistance, they do not account for measures of inflammation. Inflammatory markers such as C-reactive protein (CRP) and interleukin-6 are elevated in MetS.6,11,13 Some have proposed that inflammation be included into the definition of the MetS,14 but whether inflammation provides additional information to standard MetS criteria is unclear.

The Cardiovascular Health Study (CHS) offers a unique opportunity to examine associations between MetS and incident PAD in a large, well-defined population with long-term follow-up. We investigated the association of MetS and its individual components with the risk of developing a low
ankle-brachial index (ABI) as well as symptomatic clinical PAD. We also investigated how a modified MetS definition that includes inflammation is associated with incident PAD.

Methods

Study Participants

The CHS is a community-based, longitudinal observational study of adults ≥65 years at baseline that was designed to evaluate risk factors for the development and progression of cardiovascular disease. The study’s primary objectives and design have been reported previously. Briefly, participants were recruited from randomly sampled Medicare eligibility lists in Sacramento, CA; Forsyth County, NC; Washington County, MD; and Allegheny County, PA. Eligibility also required an expectation to remain in the area for 3 years after recruitment, no active cancer treatment, and written informed consent. An initial 5201 individuals were recruited between 1989 and 1990, and an additional 687 blacks were recruited in 1992 and 1993. The study received approval from investigational review boards of the 4 clinical sites and the coordinating data center at the University of Washington.

Laboratory Analyses

Please refer to Methods in online-only Data Supplement.

Classification of MetS

MetS was defined as meeting 3 of the following 5 criteria consistent with the joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity: (1) large waist circumference (women ≥88 cm, men ≥102 cm), (2) elevated triglycerides (≥150 mg/dL), (3) low high-density lipoprotein (men <40 mg/dL, women <50 mg/dL), (4) impaired fasting glucose (≥100 mg/dL <126 mg/dL), and (5) high blood pressure (≥130 and ≥80 mm Hg or use of medications for hypertension). We categorized 8 individuals who were positive for 3 or more criteria as having MetS even if information was missing on the others; these individuals were excluded in analyses of number of positive components. Use of fibrates and statins for the development and progression of cardiovascular disease. The CHS is a community-based, longitudinal observational study of adults ≥65 years at baseline that was designed to evaluate risk factors for the development and progression of cardiovascular disease. The study’s primary objectives and design have been reported previously. Briefly, participants were recruited from randomly sampled Medicare eligibility lists in Sacramento, CA; Forsyth County, NC; Washington County, MD; and Allegheny County, PA. Eligibility also required an expectation to remain in the area for 3 years after recruitment, no active cancer treatment, and written informed consent. An initial 5201 individuals were recruited between 1989 and 1990, and an additional 687 blacks were recruited in 1992 and 1993. The study received approval from investigational review boards of the 4 clinical sites and the coordinating data center at the University of Washington.

Laboratory Analyses

Please refer to Methods in online-only Data Supplement.

Analytic Cohorts

Because diabetes mellitus is a known strong predictor of incident PAD, we excluded participants with diabetes mellitus to evaluate the separate influence of MetS on PAD incidence per se.

Different analytic cohorts were used for the 2 outcomes of incident low ABI and clinical PAD. The analysis of incident clinical PAD events used date of enrollment as baseline. Of the 5888 participants enrolled in CHS, we excluded 151 with prevalent PAD, 50 who were missing data on more than 2 MetS components, 68 who were missing measurements on CRP or fibrinogen, 867 with diabetes mellitus, and 120 who were missing covariate information. A total of 4632 participants were therefore available for the analysis of clinical PAD. The analysis of incident low ABI included participants who had an ABI measured in 1992 to 1993 and in 1998 to 1999 and used the 1992–1993 examination as baseline (Figure).

Statistical Analysis

Incident Low ABI

We used general linear models with log link, Poisson error structure, and robust standard errors to calculate relative risks for developing a low ABI according to the presence or absence of MetS, each MetS component, and each inflammatory marker. Models were adjusted for age, sex, race, clinic site, alcohol consumption, cigarette smoking (current status and pack-years of smoking), prevalent cardiovascular disease, low-density lipoprotein, estimated glomerular filtration rate (eGFR), and physical activity levels. Prevalent cardiovascular disease was defined as history of myocardial infarction, angina, angioplasty, bypass surgery, or stroke. Models evaluating the presence or absence of MetS were additionally adjusted for CRP and fibrinogen. To evaluate whether the association of MetS and PAD was modified by either sex or race, we fit models that included cross-product terms and robust standard errors to calculate relative risks for developing a low ABI at baseline and in the same leg in 1998 to 1999 (baseline minus follow-up). Incident low ABI was defined as a decline in ABI of at least 0.15 to 0.9 or less. Requiring a decline of at least 0.15 is consistent with definitions used in prior CHS articles, can help to limit regression to the mean, and avoids small, clinically insignificant changes being included in the incident low ABI definition.

Clinical PAD

At baseline, clinical PAD was defined as either an ABI <0.90 at the baseline examination or both exertional leg pain relieved by rest and a physician’s diagnosis of PAD. In addition, any of the following also validated a PAD diagnosis, with evidence that the test was initiated by the participant’s complaint of leg pain: Doppler ultrasound showing at least a 75% reduction in the cross-sectional area of the artery or showing an ulcerated plaque; angiography showing at least a 50% reduction in the diameter or 75% reduction in the cross-sectional area of the artery or showing an ulcerated plaque; absence of a Doppler pulse in any major vessel; a positive exercise test for claudication; or bypass surgery, angioplasty, amputation, or thrombolysis for the indication of PAD. During follow-up, potential incident clinical PAD was identified by self-report of a PAD diagnosis by the participant at an annual clinic visit or during a 6-month follow-up telephone call, a PAD diagnosis found during review of medical records for other events, or as part of regular review of Centers for Medicare & Medicaid Services records for the International Classification of Diseases, ninth revision codes 440.2 (atherosclerosis of the native arteries of the extremities) and 443.9 (peripheral vascular disease, unspecified). After a potential PAD event was identified, medical records were then reviewed, and a final decision was adjudicated by the Morbidity Subgroups of the CHS Clinical Events Subcommittee.

Other Covariates

Please refer to Methods in online-only Data Supplement.
relative risk of developing a low ABI associated with the presence of 1, 2 to 3, or 4 to 5 MetS components compared with participants with no MetS components present.

To assess the individual and joint associations of MetS and inflammation markers with incident low ABI, we cross-classified participants on MetS status (presence/absence) and inflammation status (low/high). CRP and fibrinogen were considered separately and low/high categories were dichotomized at 3 mg/L for CRP and the highest tertile of the distribution for fibrinogen (341 mg/dL). We calculated the relative risk of incident ABI for each category compared with the group without MetS and low inflammation levels.

Finally, adjusted relative risks were calculated incorporating CRP or fibrinogen into the MetS definition (CRP-MetS and fibrinogen-MetS) to determine whether this improves risk prediction of a low ABI. A c-statistic (area under the receiver operating characteristic curve) of the modified MetS definition for a low ABI was also calculated to determine the added impact of inflammatory markers.

Incident Clinical PAD

To evaluate the association between MetS, individual MetS components, inflammatory markers, and incident clinical PAD, we calculated hazard ratios (HRs) and 95% confidence interval (CI) using Cox proportional hazards models. Participants who did not develop clinical PAD were censored at the earliest of loss to follow-up, death, or the end of follow-up for this analysis (June 2007), and time-to-event was calculated as the interval between enrollment and either incident PAD or censorship.

Results

Baseline characteristics of participants followed up for clinical PAD stratified by the presence or absence of MetS are shown in Table 1.

There were 253 cases of incident low ABI among the 1899 participants with follow-up ABI measurements. There were 208 incident cases of clinical PAD among the 4632 participants followed up for this outcome over a median duration of 13.7 years.

Table 2 shows the relative risk for developing a low ABI and HR for clinical PAD by baseline MetS, each MetS component, and elevated CRP or fibrinogen. MetS was associated with both outcomes in the multivariate model. Additional adjustment for CRP and fibrinogen did not appreciably attenuate the association between MetS and either a low ABI (RR, 1.19; 95% CI, 0.94–1.50) or clinical PAD (HR, 1.31; 95% CI, 0.96–1.77).

Table 1. Baseline Characteristics of Cardiovascular Health Study Participants According to the Presence or Absence of Metabolic Syndrome*

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Absent (n=2833)</th>
<th>Present (n=1799)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>72.8 (5.7)</td>
<td>72.7 (5.4)</td>
</tr>
<tr>
<td>Male, %</td>
<td>43.5</td>
<td>34.8</td>
</tr>
<tr>
<td>Black, %</td>
<td>14.5</td>
<td>12.5</td>
</tr>
<tr>
<td>Smoking status, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td>46.0</td>
<td>48.3</td>
</tr>
<tr>
<td>Former</td>
<td>41.5</td>
<td>40.1</td>
</tr>
<tr>
<td>Current</td>
<td>12.5</td>
<td>11.6</td>
</tr>
<tr>
<td>Pack-years among ever smokers</td>
<td>31.2 (25.9)</td>
<td>35.4 (29.4)</td>
</tr>
<tr>
<td>Alcoholic drinks/wk, %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>None</td>
<td>43.5</td>
<td>51.5</td>
</tr>
<tr>
<td><7</td>
<td>39.4</td>
<td>37.3</td>
</tr>
<tr>
<td>≥7</td>
<td>17.2</td>
<td>12.2</td>
</tr>
<tr>
<td>Prevalent CVD, %</td>
<td>16.6</td>
<td>24.4</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>24.8 (3.9)</td>
<td>28.6 (4.6)</td>
</tr>
<tr>
<td>LDL cholesterol, mg/dL</td>
<td>128 (34)</td>
<td>135 (36)</td>
</tr>
<tr>
<td>C-reactive protein, median (IQR), mg/L</td>
<td>1.9 (1.0–3.6)</td>
<td>3.1 (1.7–5.2)</td>
</tr>
<tr>
<td>Fibrinogen, mg/dL</td>
<td>315.8 (64.0)</td>
<td>330.0 (66.9)</td>
</tr>
<tr>
<td>Waist circumference, cm</td>
<td>88.9 (11.8)</td>
<td>100.1 (11.7)</td>
</tr>
<tr>
<td>Triglycerides, median (IQR), mg/dL</td>
<td>100 (82–125)</td>
<td>157 (119–198)</td>
</tr>
<tr>
<td>HDL, mg/dL</td>
<td>60 (15)</td>
<td>49 (13)</td>
</tr>
<tr>
<td>Fasting glucose, mg/dL</td>
<td>96 (9)</td>
<td>105 (10)</td>
</tr>
<tr>
<td>Systolic blood pressure, mm Hg</td>
<td>133 (22)</td>
<td>140 (21)</td>
</tr>
<tr>
<td>Diastolic blood pressure, mm Hg</td>
<td>70 (11)</td>
<td>72 (11)</td>
</tr>
<tr>
<td>High blood pressure, %</td>
<td>62.2</td>
<td>90.6</td>
</tr>
</tbody>
</table>

CVD indicates cardiovascular disease; HDL, high-density lipoprotein; IQR, interquartile range; and LDL, low-density lipoprotein.

*Values given are mean (SD) unless otherwise indicated.
Inflammatory markers

<table>
<thead>
<tr>
<th>MetS components, by criteria</th>
<th>Incident Low ABI</th>
<th>Incident Clinical PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative Risk (95% CI) No. of Cases/Total (%)</td>
<td>Model 1* Model 2†</td>
</tr>
<tr>
<td></td>
<td>No. of Cases/Total (%)</td>
<td>Model 1* Model 2†</td>
</tr>
<tr>
<td>No MetS</td>
<td>140/1183 (11.8)</td>
<td>1.00 1.00</td>
</tr>
<tr>
<td>MetS</td>
<td>113/716 (15.8)</td>
<td>1.35 (1.08–1.70) 1.26 (1.00–1.58)</td>
</tr>
</tbody>
</table>

Inflammatory markers

- **C-reactive protein >3 mg/L**: 1.27 (1.01–1.60) 1.15 (0.92–1.45) 2.15 (1.63–2.84) 1.76 (1.33–2.33)
- **Fibrinogen >341 mg/dL**: 1.57 (1.25–1.98) 1.45 (1.15–1.81) 1.50 (1.13–1.99) 1.27 (0.95–1.69)

Table 2. Relative Risk of Developing a Low Ankle-Brachial Index or Clinical Peripheral Artery Disease Associated With the Presence or Absence of Metabolic Syndrome and Its Individual Components

There was evidence of effect modification by race for MetS and end points of low ABI (P interaction=0.05) and clinical PAD (P interaction=0.07). In analyses adjusted for age, sex, clinic site, and smoking, MetS was not associated with an increased risk of incident low ABI (RR, 0.80; 95% CI, 0.45–1.44) or clinical PAD (HR, 0.97; 95% CI, 0.46–2.06) in black participants. CRP was statistically significantly associated with developing clinical PAD but not low ABI, whereas an elevated fibrinogen level was associated with incident low ABI but not PAD.

Of the individual MetS criteria, only high blood pressure was significantly associated with the development of both a low ABI and clinical PAD (Table 2), although impaired fasting glucose was nearly so. In a multivariable model including all individual MetS criteria and both inflammatory markers, hypertension remained significantly associated with the development of both a low ABI (RR, 2.12; 95% CI, 1.53–2.93) and clinical PAD (HR, 2.11; 95% CI, 1.40–3.17), CRP remained significantly associated with developing clinical PAD (HR, 2.12; 95% CI, 1.40–3.17), and fibrinogen remained significantly associated with an incident low ABI (RR, 1.41; 95% CI, 1.11–1.81). Compared with individuals with no baseline MetS criteria, the relative risk of incident low ABI increased with increasing number of MetS criteria (Table S1 in the online-only Data Supplement).

Incorporating Inflammation With MetS on Risk of Incident PAD

Joint associations of MetS and either fibrinogen or CRP with the development of an incident low ABI and clinical PAD are shown in Tables S2 and S3, respectively. There was no evidence of synergistic associations for development of an incident low ABI. The combination of MetS and an elevated fibrinogen or CRP resulted in a higher likelihood of developing clinical PAD compared with having only one of these.

To determine whether including CRP or fibrinogen in the definition of MetS increased the predictive value of MetS for developing a low ABI, we created 2 modified definitions of MetS: CRP-MetS and fibrinogen-MetS (Table 3). The prevalence of CRP-MetS was 50.0% (949 of 1899), with 233 of 1183 (19.7%) without MetS reclassified as CRP-MetS. Participants with CRP-MetS had increased risk for an incident low ABI (RR, 1.36; 95% CI, 1.07–1.72 versus no CRP-MetS). The prevalence of fibrinogen-MetS was 47.6% (904 of 1899), with 188 of 1183 (15.9%) without MetS reclassified as fibrinogen-MetS. Participants with fibrinogen-MetS also had a significantly increased risk for an incident low ABI (RR, 1.43; 95% CI, 1.13–1.81) when compared with participants without fibrinogen-MetS. Compared with the c-statistic for MetS alone (0.540), the addition of fibrinogen significantly improved discrimination (c, 0.565; P=0.03) but the addition of CRP did not (c, 0.556; P=0.18).

CRP-MetS and fibrinogen-MetS were also associated with risk of developing clinical PAD (Table 3). The HRs were 1.56 (95% CI, 1.17–2.08) for CRP-MetS and 1.55 (95% CI, 1.17–2.07) for fibrinogen-MetS. The c-statistics for both CRP-MetS (0.566) and fibrinogen-MetS (0.567) related to the development of clinical PAD were similar to the c-statistic for MetS alone (0.556). Comparing the area under the curve for MetS versus MetS-inflammation, the P values were 0.37 and 0.29 for MetS versus MetS-CRP and MetS versus MetS–Fib, respectively.

Discussion

In a cohort of community-dwelling older adults, MetS was associated with the development of PAD, defined either by a low ABI or the development of clinically manifest PAD, after the adjustment for traditional risk factors and markers of inflammation. Hypertension was the only MetS component independently associated with incident PAD. Inflammatory
markers CRP and fibrinogen were also independently associated with incident PAD.

Our findings contrast with the 2 previously published studies on the prospective associations of MetS and incident PAD. The Edinburgh Artery Study (EAS) found no association between MetS and incident PAD.\(^9\) In the Women’s Health Study, a younger cohort of females free of baseline cardiovascular disease participating in a clinical trial, MetS was associated with an increased risk of incident PAD.\(^9\) This association, however, was strongly attenuated after adjustment for inflammatory markers CRP and soluble intracellular adhesion molecule-1 and no longer significant.

The CHS cohort comprised older individuals with a significantly higher baseline prevalence of hypertension and may, in part, explain discrepancies between our findings and those reported in the EAS and Women’s Health Study. Additionally, these 2 prior studies used adapted definitions of MetS and, consequently, did not capture the true prevalence of participants meeting criteria for this syndrome. Waist circumference was not available in either study and body mass index was used instead, which may not capture visceral adiposity. In addition, the Women’s Health Study defined glucose intolerance as the presence or absence of diabetes mellitus, and diabetes mellitus is a well-established PAD risk factor.\(^9\) Thus, overt diabetes mellitus may have driven associations in this study. Additionally, the primary end point for both studies was limited to symptomatic PAD. Prior studies have reported that anywhere from 20% to 50% of individuals with PAD are asymptomatic.\(^25,26\) The presence of PAD as assessed by ABI as we did here, regardless of the presence of symptoms, is strongly associated with increased cardiovascular morbidity and mortality.\(^27\) It is unclear why these findings were not consistent across race. Our null findings in black participants may simply be the result of small event numbers or chance. Further study with primary attention to racial differences is needed.

The association between inflammation and incident PAD has been demonstrated previously.\(^25\) Both CRP and fibrinogen have been reported to be associated with the development of incident PAD.\(^28,29\) Our results corroborate those of prior studies by also showing an independent association between inflammation and the development of PAD. It is unclear, however, why CRP was only significant for the development of clinical PAD and fibrinogen only significant for the development of a low ABI. As mentioned previously, the CHS cohort is different at baseline from other well-studied cohorts in terms of age and prevalence of hypertension. As a result, it may be that different biomarkers are relevant in different populations. Alternatively, these results may signify that inflammation is important in development of both outcomes, and the disparity found between fibrinogen and CRP is simply reflective of chance.

To our knowledge, this is the first prospective study to evaluate the incorporation of inflammation markers into a MetS definition with incident PAD. Findings from the Women’s Health Study suggested that increased inflammation and endothelial activation might serve as a mechanistic link between MetS and incident PAD. Our results suggest that the relationship between MetS and incident PAD is independent of common inflammatory pathways represented by markers such as CRP and fibrinogen, but the addition of inflammation to the definition of MetS identified larger numbers of older adults at risk and, at least for MetS-Fib, significantly improved discrimination between individuals who did and did not develop a low ABI.

Hypertension was the only MetS component independently associated with incident PAD. Prior studies have documented a strong cross-sectional association between hypertension and PAD.\(^25,30\) In CHS participants, hypertension was previously reported as a risk factor for ABI decline.\(^22\) eGFR has been previously reported to be closely correlated to hypertension in CHS participants and may explain why findings were slightly attenuated after adjusting for this.\(^31\) It is also possible that eGFR may be a mediator. Our findings underscore the particular role of hypertension in the development of PAD in older individuals with MetS. Current American College of Cardiology and American Heart Association guidelines recommend all individuals aged ≥65 years be screened for PAD. Because hypertension is extremely prevalent and a strong risk factor for PAD development in older age, our results only further justify the need to screen all individuals aged ≥65 years.

Our study has limitations. The CHS participants are all aged ≥65 years; therefore, our results may not be generalizable to younger aged cohorts. Follow-up ABI data were not available for many participants, and this may have introduced bias to analyses involving ABI decline, although results were generally similar for analyses of incident clinical PAD that were not limited by attrition.

Table 3. Relative Risk of Incident Low Ankle-Brachial Index or Symptomatic Peripheral Artery Disease Associated With the Presence or Absence of C-Reactive Protein-Metabolic Syndrome and Fibrinogen-Metabolic Syndrome

<table>
<thead>
<tr>
<th>Participant Category</th>
<th>Low ABI</th>
<th>Symptomatic PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Relative Risk (95% CI)</td>
<td>No. of Cases; No. of Person-Years</td>
</tr>
<tr>
<td></td>
<td>Model 1*</td>
<td>Model 2†</td>
</tr>
<tr>
<td>No MetS-CRP</td>
<td>102/950 (10.7)</td>
<td>1.0</td>
</tr>
<tr>
<td>MetS-CRP</td>
<td>151/949 (15.9)</td>
<td>1.49 (1.18−1.89)</td>
</tr>
<tr>
<td>No MetS-Fibrinogen</td>
<td>104/995 (10.5)</td>
<td>1.0</td>
</tr>
<tr>
<td>MetS-Fibrinogen</td>
<td>149/904 (16.5)</td>
<td>1.57 (1.24−1.98)</td>
</tr>
</tbody>
</table>

ABI indicates ankle-brachial index; CI, confidence interval; CRP, C-reactive protein; MetS, metabolic syndrome; and PAD, peripheral artery disease.

*Model 1 is adjusted for age, sex, race (black, nonblack), and clinic site.

†Model 2 is adjusted for age, sex, race, clinic site, alcohol, smoking (current status and pack-years), blocks walked, prevalent cardiovascular disease, and low-density lipoprotein.
Perspectives

MetS is associated with the development of both a low ABI and clinical PAD. Incorporating measures of inflammation into the definition of MetS may help identify more at-risk individuals and provide additive information in predicting incident PAD. Lifestyle modification strategies such as aggressive blood pressure control, dietary changes, regular exercise, and weight loss may be useful targets to evaluate in intervention studies to determine if these reduce the risk of PAD in individuals with MetS. Considering the strong association of hypertension with incident PAD in MetS, studies are needed to determine if strict blood pressure control provides particular benefit to reduce the risk of PAD.

Sources of Funding

This research was supported by National Heart, Lung, and Blood Institute (NHLBI) contracts N01-HC-85239, N01-HC-85079 through N01-HC-85086, N01-HC-85129, N01-HC-15103, N01-HC-55222, N01-HC-75150, N01-HC-85133, and NHLBI grants HL080295, HL094555, and K12-HL083790, with additional contribution from the National Institute of Neurological Disorders and Stroke. Additional support was provided through AG-023629, AG-15928, AG-20098, and AG-027058 from the National Institute on Aging. See also http://www.chs-nhlbi.org/pi.

Disclosures

None.

References

28. Ridker PM, Stampfer MJ, Rifai N. Novel risk factors for systemic atherosclerosis: a comparison of C-reactive protein, fibrinogen, homocysteine,
lipoprotein(a), and standard cholesterol screening as predictors of peripheral arterial disease. *JAMA*. 2001;285:2481–2485.

Novelty and Significance

What Is New?

- We examined the combined effects of 2 important abnormalities that lead to atherosclerosis—the constellation of increasingly common metabolic abnormalities termed metabolic syndrome and 2 blood tests that reflect inflammation.
- We determined how each abnormality influences 2 measures of blockages in arteries of the legs in older adults.

What Is Relevant?

- Hypertension is a key component of metabolic syndrome and very common in these older adults.

Summary

- Of the metabolic syndrome components, hypertension was most strongly linked to blocked arteries.

Both metabolic syndrome and inflammation lead to blocked arteries in the leg.

Using inflammation to define metabolic syndrome helps to identify people at risk.
Metabolic Syndrome and Risk of Incident Peripheral Artery Disease: The Cardiovascular Health Study

Hypertension. 2014;63:413-419; originally published online November 4, 2013; doi: 10.1161/HYPERTENSIONAHA.113.01925

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2013 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/63/2/413

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2013/11/04/HYPERTENSIONAHA.113.01925.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Metabolic Syndrome and Risk of Incident Peripheral Artery Disease: The Cardiovascular Health Study

Parveen K Garg1, Mary L Biggs2, Mercedes Carnethon3, Joachim H Ix4,5, Michael H Criqui6, Kathryn A Britton7, Luc Djoussé8,9, Kim Sutton-Tyrrell10*, Anne B Newman10, Mary Cushman11, Kenneth J Mukamal12

1Division of Cardiology, University of Southern California, Los Angeles, California; 2Department of Biostatistics, University of Washington, Seattle, Washington; 3Department of Preventive Medicine, Northwestern University, Chicago, Illinois; 4Nephrology Section, Veterans Affairs San Diego Healthcare System, San Diego, CA; 5Division of Nephrology and 6Department of Family & Preventive Medicine, University of California San Diego, San Diego, California; Divisions of 7Cardiovascular Medicine and 8Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts; 9Boston Veterans Affairs Healthcare System, Boston, Massachusetts; 10Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania; 11Departments of Medicine and Pathology, University of Vermont, Burlington, Vermont; 12Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts

Running Title: Metabolic Syndrome and PAD Word Count: 5987

Address for Correspondence:
Parveen K Garg, MD
Division of Cardiology, University of Southern California
1510 San Pablo St, Suite 322
Los Angeles, CA 90033
Email: parveeng@usc.edu
Telephone: 323-442-7516
Fax: 323-442-6133
Supplemental Methods

Laboratory Analyses

Blood was drawn in the morning after an overnight fast, and samples were analyzed at the Central Blood Analysis Laboratory at the University of Vermont. Quality assurance procedures and results for blood procurement, processing, shipping, storage, and sample analysis have been reported previously. Serum total cholesterol, high-density lipoprotein cholesterol (HDL), triglycerides, glucose, and creatinine were measured by enzymatic methods. Low-density lipoprotein cholesterol (LDL) was calculated for those with triglycerides <400 mg/dL using the Friedewald equation. CRP was measured by a validated high-sensitivity enzyme-linked immunosorbent assay (ELISA). Cystatin C was measured by means of a particle-enhanced immunonephelometric assay (N Latex Cystatin C; Dade Behring) with a nephelometer (BNII; Dade Behring). Glomerular filtration rate (eGFR) was estimated with the use of the CKD-EPI cystatin C equation (eGFRcys) without demographic coefficients: eGFRcys = 76.7 × cys C−1.19.

Other Covariates

For the purpose of exclusion, diabetes mellitus was defined as a fasting blood glucose level of ≥126 mg/dl, non-fasting glucose of ≥200 mg/dL, or the use of anti-diabetic medication, including both oral medications and insulin. Field center staff directly measured weight and standing height, and body mass index was calculated as measured weight in kilograms divided by standing height in meters squared. Physical activity levels referred to the self-reported number of blocks walked per week. Alcohol consumption was grouped according to self-reported number of drinks per week (none, <7 drinks weekly, 7–13 drinks weekly, and ≥14 drinks weekly). We separated smoking into three categories (current, former, and never) and calculated pack-years of smoking at baseline based upon reported age at onset, age at cessation, and average use.
Supplemental References

Supplemental Results
S1: Relative risk for developing a low ABI according to number of metabolic syndrome (MetS) components at baseline

<table>
<thead>
<tr>
<th>MetS components</th>
<th># Cases / Total (%)</th>
<th>Relative Risk (95% CI)</th>
<th>Model 1*</th>
<th>Model 2†</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>9/158 (5.7)</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>1</td>
<td>53/464 (11.4)</td>
<td>1.78 (0.93-3.41)</td>
<td>1.76 (0.91-3.41)</td>
<td></td>
</tr>
<tr>
<td>2-3</td>
<td>137/964 (14.2)</td>
<td>2.35 (1.26-4.37)</td>
<td>2.27 (1.22-4.21)</td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>54/313 (17.3)</td>
<td>2.98 (1.49-5.94)</td>
<td>2.89 (1.44-5.82)</td>
<td></td>
</tr>
</tbody>
</table>

* Model 1 adjusted for age, sex, race, clinic site, alcohol, smoking (current status & pack-years), blocks walked, prevalent CVD, LDL
† Model 2 adjusted for age, sex, race, clinic site, alcohol, smoking (current status & pack-years), blocks walked, prevalent CVD, LDL, C-reactive protein, fibrinogen
S2: Relative risk of developing a low ABI by the combination of metabolic syndrome (MetS) and inflammatory markers

<table>
<thead>
<tr>
<th>Elevated inflammation marker*</th>
<th>MetS</th>
<th>C-reactive protein</th>
<th>Fibrinogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td># Cases / Total (%)</td>
<td>Relative Risk (95% CI)†</td>
</tr>
<tr>
<td>(-)</td>
<td>(-)</td>
<td>90/790 (11.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>(-)</td>
<td>(+)</td>
<td>46/338 (13.6)</td>
<td>1.13 (0.82-1.57)</td>
</tr>
<tr>
<td>(+)</td>
<td>(-)</td>
<td>50/393 (12.7)</td>
<td>1.02 (0.75-1.40)</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
<td>67/378 (17.7)</td>
<td>1.38 (1.02-1.86)</td>
</tr>
</tbody>
</table>

*Elevated inflammation marker defined as >3 mg/L for C-reactive protein and >341 mg/dL for fibrinogen
† Relative risks are adjusted for age, sex, race (black, non-black), clinic site, alcohol, smoking (current status & pack-years), blocks walked per week, prevalent CVD, LDL
S3: Relative risk of developing clinical PAD by the combination of metabolic syndrome (MetS) and inflammatory markers

<table>
<thead>
<tr>
<th>Elevated inflammation marker*</th>
<th>MetS</th>
<th>C-reactive protein</th>
<th>Fibrinogen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Cases; Person-Years</td>
<td>Hazard Ratio (95% CI)†</td>
<td># Cases; Person-Years</td>
</tr>
<tr>
<td>(-) (-)</td>
<td>56; 24510</td>
<td>1.00 (72; 26060)</td>
<td>1.00</td>
</tr>
<tr>
<td>(-) (+)</td>
<td>38; 11168</td>
<td>1.45 (0.96-2.20)</td>
<td>56; 14156</td>
</tr>
<tr>
<td>(+) (-)</td>
<td>48; 10465</td>
<td>1.81 (1.23-2.68)</td>
<td>32; 8915</td>
</tr>
<tr>
<td>(+) (+)</td>
<td>66; 10742</td>
<td>2.22 (1.53-3.20)</td>
<td>48; 7753</td>
</tr>
</tbody>
</table>

*Elevated inflammation marker defined as >3 mg/L for C-reactive protein and >341 mg/dL for fibrinogen
† Relative risks are adjusted for age, sex, race (black, non-black), clinic site, alcohol, smoking (current status & pack-years), blocks walked per week, prevalent CVD, LDL