Is Natriuretic Peptide Receptor C a New Target for Hypertension Therapeutics?

YanFei Qi, Mohan K. Raizada

Natriuretic peptides (NPs) include atrial NP (ANP), B-type NP, and C-type NP. NPs exert cardiovascular protective effects through interaction with their receptors. There are 2 major classes of NP receptors (NPRs): guanylyl cyclase–coupled receptors A and B (NPR-A and NPR-B) and inhibitory guanine nucleotide regulatory protein (inhibitory G protein)–coupled receptor C (NPR-C; Figure). The cardiovascular protective effects of NPs have been primarily attributed to the elevation of intracellular cGMP via NPR-A and NPR-B.1 NPR-C, initially identified as a clearance receptor,2 has been shown to inhibit adenyl cyclase via the α subunit of the inhibitory G protein and to stimulate phospholipase C signaling via the βγ subunits of the same inhibitory G protein.3 NPR-C is widely distributed in many tissues and cell types and has higher density than NPR-A and NPR-B in most tissues.4 Ligands for NPR-C include ANP, B-type NP, and C-type NP (C-ANP4–23 [des(Gln18,Ser19,Glu20,Leu21,Gly22)ANP4–23-NH2]). C-ANP4–23, a ring-deleted analog of ANP, is a specific and selective NPR-C agonist (Figure). Multitudes of studies have underscored the importance of NPs and NPR-C in regulating cardiovascular homeostasis and have proposed NPs and NPRs as potential targets for therapy of cardiovascular diseases. Both genetic and pharmacological evidence have implied the involvement of NPs and NPR-C in hypertension. For example, polymorphisms in NPR-C gene seem to be associated with hypertension.5 In addition, administration of B-type NP decreases blood pressure in both animal hypertension models and humans.6,7 It is in this context that the study of Li et al8 in this issue of Hypertension is relevant. Li et al8 have demonstrated that intraperitoneal injection of C-ANP4–23 decreases levels of inhibitory G protein α and oxidative stress and also prevents the increase in blood pressure in prehypertensive spontaneously hypertensive rats (Figure). In addition, it attenuates high blood pressure in adult spontaneously hypertensive rat and restores vasorelaxation toward control levels. This is the first indication that NPR-C agonist could be considered as a therapeutic target for hypertension and related pathophysiology. However, significant issues must be addressed to move this concept forward such as given below.

First, prevention studies are relevant but have limited clinical significance in view of the lack of reliable markers for hypertension/cardiovascular diseases. Thus, long-term reversal studies and their validation, with the use of multiple animal models of hypertension, would be extremely valuable. Second, NPR-C also acts as a clearance receptor for NPs. Thus, it is relevant to determine the chronic effects of C-ANP4–23 treatment in overall health and physiology of the animal, given the observation that genetic changes in NPR-C result in abnormal hypertensive effects by reducing oxidative stress and restoring vasorelaxation. C-ANP4–23 could also inhibit clearance of natriuretic peptides (NPs) from circulation, accentuating its antihypertensive effects. Bioencapsulation and nanotechnology can be used to effectively deliver this physiologically active peptide orally to increase patient compliance and therapeutic efficacy and reduce cost. Third, development of proteins/peptides as therapeutic agents may lead to unwanted pathophysiological consequences. Third, development of proteins/peptides as therapeutic agents is challenging as a result of tremendous technical and financial restrictions, not to mention significant compliance issues. Innovative nanoparticles9 and plant-based technologies10 are now available to encapsulate therapeutic peptides for oral delivery (Figure). Adapting any of these techniques to deliver C-ANP4–23 orally would be the logical next step in providing conceptual support for the therapeutic potential of this peptide. In summary, activation of the NPR-C signaling pathway represents a new therapeutic opportunity to refine and improve existing therapies to achieve target-organ protection, blood pressure control, and optimal volume homeostasis.
Sources of Funding
This work was supported by National Institutes of Health grants 2UM1 HL087366-06, HL056921, and HL102033.

Disclosures
None.

References
YanFei Qi and Mohan K. Raizada

Is Natriuretic Peptide Receptor C a New Target for Hypertension Therapeutics?

Hypertension. 2014;63:661-662; originally published online January 27, 2014;
doi: 10.1161/HYPERTENSIONAHA.113.02702

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/63/4/661

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org/subscriptions/