Impact of the Direct Angiotensin II Type 2 Receptor Stimulation on Renal Function Toward a Sex-Specific Therapeutic Approach for Hypertension

Carmine Savoia, Massimo Volpe

See related article, pp 378–383

Hypertension and cardiovascular diseases are more prevalent in men than in premenopausal women of the same age. However, after menopause, this cardiovascular protection in women is lost, possibly because of the unbalance of estrogen production and other sex hormones in postmenopause. Although the mechanisms underlying these sex differences remain unclear, divergences in the function of the renin-angiotensin system (RAS) and differences in the response to stimulation and inhibition of RAS in men and premenopausal women have been proposed.1,2

RAS is involved in blood pressure regulation by modulating vascular tone and renal excretory function. In particular, the kidney is involved in the long-term regulation of arterial pressure by modulating sodium excretion.1

It is now generally accepted that RAS organization is dual and that beside the well-known main pressor axis (angiotensin-converting enzyme/angiotensin [Ang] II/Ang type 1 receptor [AT1R]), there is a second depressor protective axis consisting of Ang type 2 receptor (AT2R), angiotensin-converting enzyme 2, Ang-(1–7), and MasR.1 In particular, AT2R mediates the vasodilatory and natriuretic actions of angiotensin peptides. AT2R is expressed throughout the kidney in both vascular and tubular elements, and it is greatly expressed in renal proximal tubule cells.1,2 AT2R induces vasodilation in both resistance and capacitance vessels, and it is greatly expressed in renal proximal tubule cells.1,2 AT2R induces vasodilation in both resistance and capacitance vessels, and it is greatly expressed in renal proximal tubule cells. AT2R stimulation does not increase glomerular filtration rate, possibly because of direct effects on both preglomerular and postglomerular arterioles or, alternatively, a direct relaxation of podocytes, thus reducing, in turn, the surface area available for filtration. Hence, the increased excretion of sodium in response to AT2R stimulation might be attributed to an inhibition of tubular sodium reabsorption, independent of AT2R-mediated changes in renal hemodynamics.

The study by Hilliard et al1 published in this issue of Hypertension further extends the knowledge on the direct AT2R stimulation with the novel nonpeptide AT2R agonist, Compound 21 (C21), on renal function, in hypertensive conditions in female rats. Acute AT2R stimulation enhanced renal vasodilatation and sodium excretion, without concomitant alterations in glomerular filtration rate in female but not in male hypertensive rats. Although these experiments were performed in denervated kidneys, the main findings of the study demonstrate a favorable effect of the direct AT2R stimulation on renal hemodynamics and natriuresis in vivo, particularly in female hypertensive rats. This suggests that the direct AT2R stimulation could represent an attractive and feasible therapeutic approach for the treatment of hypertension and associated renal disease, at least in premenopausal women.

However, it has been shown that the direct AT2R stimulation with C21 does not induce a significant effect on systemic blood pressure in both male and female rodents, while AT2R stimulation induces renal vasodilation and natriuretic effects in both normotensive male and female rats, although in a...
dose-dependent manner only in female rats. Also, in spontaneously hypertensive rats, AT2R stimulation with C21 induced renal vasodilatory and natriuretic effects in females, in the absence of any significant changes in arterial pressure. Thus, the direct AT2R stimulation seems to be involved in the modulation of renal vascular tone and natriuresis, particularly in premenopausal females. On the other hand, C21 is not directly involved in systemic blood pressure regulation, unless AT1R is previously blocked. Indeed, it has been shown that C21 promotes vasorelaxation in vitro, which in turn is associated with vasodepressor responses in conscious spontaneously hypertensive rats previously treated with the angiotensin receptor blocker candesartan. Furthermore, recent data show that the AT2R-mediated renal vasodilator effect after stimulation with C21 is unmasked by angiotensin-converting enzyme inhibition in spontaneously hypertensive rats but not in normotensive rats. This suggests that upregulation of renal vascular AT2R in hypertension is associated with a countervailing function opposing the increased AT1R-mediated tonic renal vasoconstriction. Thus, the counter-regulatory function of AT1R and AT2R may occur in the vasculature of hypertensive rodents, as described previously in humans also. This implies the need of AT1R blockade to obtain the therapeutic benefit of AT2R stimulation in the vasculature of hypertensive subjects and indirectly supports the existence of a cross-talk between Ang II receptor subtypes. Nevertheless, the sexual dimorphism in blood pressure control might affect the response of men and women to different therapeutic approaches. Because AT2R expression is regulated by estrogen, AT2R antagonist therapy might represent an innovative therapeutic approach to treat hypertension in premenopausal women. However, the long-term and sex-specific responses to direct AT2R stimulation during hypertension in the presence and absence of combined AT1R blockade need further elucidation in future studies to establish the efficacy of the AT2R agonism as a therapeutic target for cardiovascular disease, particularly in women.

Furthermore, whether the favorable effect of the direct AT2R stimulation on renal function and natriuresis is still present after menopause has not been established yet, and it needs to be clarified with specific studies.

Disclosures

None.

References

Impact of the Direct Angiotensin II Type 2 Receptor Stimulation on Renal Function: Toward a Sex-Specific Therapeutic Approach for Hypertension
Carmine Savoia and Massimo Volpe

Hypertension. 2014;64:227-228; originally published online May 19, 2014; doi: 10.1161/HYPERTENSIONAHA.114.03199

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/64/2/227

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/