Prevalence and Associated Factors of Silent Brain Infarcts in a Mediterranean Cohort of Hypertensives

Pilar Delgado, Iolanda Riba-Llena, José L. Tovar, Carmen I. Jarca, Xavier Mundet, Antonio López-Rueda, Francesc Orfila, Judit Luessa, Josep M. Manresa, José Álvarez-Sabín, Cristina Nafria, José L. Fernández, Olga Maisterra, Joan Montaner, on behalf of ISSYS Investigators

Abstract—Silent brain infarcts (SBIs) are detected by neuroimaging in approximately 20% of elderly patients in population-based studies. Limited evidence is available for hypertensives at low cardiovascular risk countries. Investigating Silent Strokes in Hypertensives: A Magnetic Resonance Imaging Study (ISSYS) is aimed to assess the prevalence and risk factors of SBIs in a hypertensive Mediterranean population. This is a cohort study in randomly selected hypertensives, aged 50 to 70 years old, and free of clinical stroke and dementia. On baseline, all participants underwent a brain magnetic resonance imaging to assess prevalence and location of silent infarcts, and data on vascular risk factors, comorbidities, and the presence of subclinical cardiorenal damage (left ventricular hypertrophy and microalbuminuria) were collected. Multivariate analyses were performed to determine SBIs associated factors. A total of 976 patients (49.4% men, mean age 64 years) were enrolled, and 163 SBIs were detected in 99 participants (prevalence 10.1%; 95% CI, 8.4%–12.2%), most of them (64.4%) located in the basal ganglia and subcortical white matter. After adjustment, besides age and sex, microalbuminuria and increasing total cardiovascular risk (assessed by the Framingham-calibrated for Spanish population risk function) were independently associated with SBIs. Male sex increased the odds of having SBIs in 2.5 as compared with females. Our results highlight the importance of considering both global risk assessment and sex differences in hypertension and may be useful to design future preventive interventions of stroke and dementia. (Hypertension. 2014;64:658-663.) • Online Data Supplement

Key Words: hypertension ■ stroke

Although a large amount of data are available on the prevalence of silent brain infarcts (SBIs) in the general population and of their role as independent predictors for future stroke and dementia, still further studies are needed to determine their frequency in various populations, particularly those at high risk. This information may be potentially useful to design further studies for prevention of stroke and dementia.1 Besides age, hypertension is the risk factor most consistently associated with SBIs. Remarkably, in most of these studies, the diagnosis of hypertension was based on self report from participants or on single measurements of blood pressure (BP). Also, some studies have been conducted specifically in selected groups of essential hypertensives and described a wide SBIs prevalence ranging from 20% to 86%. Several factors may be related to this large variation in prevalence. Among all studies, nearly half of them included few participants, and from those with larger sample size (Table 1),2-17 it should be noted that patients with hypertension were mainly selected among those who attended specialized units (cardiology, internal medicine, kidney departments, etc) at hospitals and were probably more representative of newly diagnosed or more severe or resistant forms of hypertension than average.

Moreover, the vast majority of studies have been conducted in Asian cohorts, which indeed differ from western countries about their distribution of vascular risk factors and stroke incidence.18 A few studies have been conducted in European countries, such as those from 1 group in The Netherlands which described prevalences of SBIs ranging from 22% to 29%.4,5,19 Because some of them included ambulatory BP monitoring, only patients in whom treatment could be removed before monitoring were enrolled.

Even less information is available for lower cardiovascular and stroke risk populations, such as those living at Mediterranean areas.20 To our knowledge, 1 group from Italy16 reported a prevalence of asymptomatic brain damage in 54.9% hypertensive individuals. However, they included not only lacunes and territorial
lesions but also other punctate lesions (>5 mm) that might not be
infarcts in all cases. Also in Spain, Sierra et al11 performed a study
in middle-aged hypertensives, in which they found that white
matter lesions (also manifestations of subclinical brain damage)
were a common finding (40.9%). However, lesions appearing as
lacunar infarcts were not assessed in their study.

The differentiation of SBIs from other similar lesions, such
as enlarged perivascular spaces, has been done poorly in the past,22
and more efforts are needed to overcome the lack of consistency
and advance in this field.23

With all that in mind, we aimed to determine the prevalence
of SBIs in a large cohort of randomly selected hypertensives in
a Mediterranean population and to study their associated risk
factors.

Methods

Subjects Selection

Investigating Silent Strokes in Hypertensives: a Magnetic Resonance Imaging Study (ISSYS) is an observational, cross-sectional, and
longitudinal study aimed to determine the prevalence of SBIs and their
relationship with future stroke and dementia in a large cohort of
Mediterranean hypertensives.24

Briefly, this study has been carried out in patients aged 50 to 70
years and diagnosed of essential hypertension who are routinely
attended by general practitioners in our health area.

Participants were randomly selected after stratification by age and
sex among 27,000 potentially eligible subjects living in the district of
the north metropolitan area of Barcelona. They were invited by phone
to participate and a visit was then scheduled where fulfillment of in-
clusion and exclusion criteria was assessed by trained investigators.

Inclusion criteria consisted of (1) patients with essential hyperten-
sion diagnosed ≥1 year earlier; (2) age comprised between 50 and 70
years, and (3) patients who gave their informed consent to participate.
Patients were excluded when (1) they had history of previous clinical
stroke or dementia, (2) brain magnetic resonance imaging (MRI) was
contraindicated, (3) there was a suspicion of white coat hypertension
syndrome, or (4) patients were affected by a terminal illness preventing
any future follow-up examination, based on the investigator criteria.

To rule out the presence of a previous stroke, medical records were
reviewed and the patient was interviewed following an adaptation of
the Stroke Symptom Questionnaire.25 Also, when dementia was
suspected, following Diagnostic and Statistical Manual of Mental
Disorders, fourth edition, revised (DSM-IV-R) criteria, the patient
was not included in the study and a proper evaluation in the presence
of a caregiver was recommended.26

Enrollment visits were conducted between November 2010 and
May 2012. Among 1037 participants who were initially enrolled in
this study, 94.1% (n=976) completed all baseline procedures, including
a brain MRI scan. The remaining participants were excluded as a result of
a claustrophobia (n=17), presence of a cranial metallic artifact
(n=8), consent withdrawal (n=33), and lost to follow-up before MRI
was performed (n=3). Excluded patients were more often men,
overweighted, and diabetic than those who were finally included.

Clinical Data Collection and Physical Examination

The study protocol was approved by the Ethics Committee of Vall d’Hebron Hospital and IDIAP Jordi Gol (University Research
Institute in Primary Care).

Assessment of all covariates was done by interviewing participants
and reviewing medical records. Hypertension was defined as systolic
BP ≥140 mm Hg, diastolic BP ≥90 mm Hg, or use of antihyperten-
vive medication. We obtained data on demographical characteristics
and personal medical history, including duration of hypertension and
presence of other vascular risk factors, such as smoking habit, alcohol
abuse, dyslipidemia, and diabetes mellitus. The presence of a previ-
ous cardiovascular, kidney, or systemic disease was also assessed. For
those participants without previous vascular disease, global vascu-
lar risk was estimated applying the Framingham-calibrated Registre
Gironí del Cor (REGICOR) function, and participants were divided
into the following categories depending on their 10-year estimated
risk of having a coronary event: low risk (<5%), moderate risk (5%–
9.9%), high risk (10%–14.9%), and very high risk (≥15%).20

Data concerning office and home BP, BP control (optimal/ poor),
and antihypertensive treatment were collected, and treatment compli-
ance was assessed with the Morisky questionnaire.27

Also weight, height, and waist circumference were measured, and
abdominal obesity was recorded.25 Office BP was measured with an
oscillometric device (Omron M6 Comfort), and the mean of the last 2
of 3 determinations after 5-minute rest was recorded.

Table 1. Other Published Studies Describing Silent Brain Infarcts in Hypertensive Cohorts

<table>
<thead>
<tr>
<th>Authors</th>
<th>Country</th>
<th>Sample Size</th>
<th>Patient Selection</th>
<th>Sex, % Male</th>
<th>Age</th>
<th>Office BP</th>
<th>SBI %</th>
<th>Previous Antihypertensive Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwon et al2</td>
<td>Korea</td>
<td>550</td>
<td>Voluntary health check</td>
<td>68.2</td>
<td>59.3 (25–83)</td>
<td>Control, 136/91</td>
<td>11.1</td>
<td>Previous treatment in 79% of the controls and 85% SBI patients</td>
</tr>
<tr>
<td>Kato et al3</td>
<td>Japan</td>
<td>100</td>
<td>Selected from outpatient office (cardiovascular and renal medicine)</td>
<td>66</td>
<td>62 (42–81)</td>
<td>NA</td>
<td>24</td>
<td>Treatment for ≥1 mo prior inclusion</td>
</tr>
<tr>
<td>Henskens et al4,5</td>
<td>The Netherlands</td>
<td>192</td>
<td>Referral to internal medicine department</td>
<td>49</td>
<td>51.6 (20–83)</td>
<td>170/104</td>
<td>29 (23–36)</td>
<td>Nontreated patients</td>
</tr>
<tr>
<td>Kario et al6–15</td>
<td>Japan</td>
<td>519</td>
<td>Patients coming from 2 hospitals, 3 clinics, and 1 outpatient clinic</td>
<td>40</td>
<td>72 (≥50)</td>
<td>164/90</td>
<td>50</td>
<td>58% of those with sustained HTN (removed for ABPM)</td>
</tr>
<tr>
<td>Selvetella et al16</td>
<td>Italy</td>
<td>195</td>
<td>Patients who visited the department of angiocardio-neurology</td>
<td>44.1</td>
<td>SBD, 67±1</td>
<td>Control, 140/86</td>
<td>54.9</td>
<td>90% were treated with anti-hypertensive drugs</td>
</tr>
<tr>
<td>Ma et al17</td>
<td>China</td>
<td>188</td>
<td>Retrospective analyses from hospital records</td>
<td>42.5</td>
<td>64 (45–75)</td>
<td>NA</td>
<td>59</td>
<td>All treated (monotherapy)</td>
</tr>
</tbody>
</table>

Only studies with a minimum sample size of 100 participants are shown. Studies are sorted by increasing silent brain infarcts (SBIs) prevalence. Office BP is expressed in mm Hg. Age is expressed as mean±SD or mean (range) as it was provided by the authors. ABPM indicates ambulatory blood pressure monitoring; BP, blood pressure; HTN, hypertension; NA, not available; and SBD, silent brain damage.
A detailed description of all covariates is presented in the online-only Data Supplement (Expanded Materials and Methods).

Several other well-known hypertensive target organ damage (TOD) markers, such as the presence of left ventricular hypertrophy (microalbuminuria and decreased estimated glomerular filtration rate [GFR]), were analyzed. Specifically, a standard 12-lead ECG was performed to assess for signs of left ventricular hypertrophy (single measurement of R wave in aVL [augmented vector left]) and heart rhythm disorders. Regarding kidney function, a single-spot urine sample was collected and sent to central laboratory for albumin-to-creatinine ratio determination. Microalbuminuria was determined as >21 mg/g in men and >30 in women. Moreover, GFR was estimated with the Modified Diet in Renal Disease-Isotope Dilution Mass Spectrometry formula. Impaired renal function was considered whenever values were below 60 mL/min per 1.73 m².

Neuroimaging Protocol
A brain MRI was performed within the next month after study entry. Data acquisition details have been published elsewhere. SBIs were defined as in previous studies as lesions of ≥3 mm of diameter in their widest dimension, with cerebrospinal-like fluid signal characteristics defined as in previous studies as lesions of the lower part of basal ganglia, were not considered as infarcts. Moreover, GFR was estimated with the Modified Diet in Renal Disease-Isotope Dilution Mass Spectrometry formula. Impaired renal function was considered whenever values were below 60 mL/min per 1.73 m².

Statistical Methods
Sample size calculation representative for our population concerning prevalence of SBIs was estimated using data from population-based studies published before, which reported specific data on SBIs prevalence in participants aged to 70 years old. According to them, the expected prevalence should be ≥10%. Therefore, after applying the Ene 3.0 free software (GlaxoSmithKline S.A., Spain; http://sct. uab.cat/estadistica/es), with a confidence interval of 95% and an accuracy of 2%, sample size should be of 2865 individuals, which was increased to 1000 individuals by taking into account possible losses.

Results
Baseline Demographical and Clinical Characteristics
Nine hundred seventy-six patients were included in this study. Demographical characteristics and cardiovascular risk profile are shown in Table 2. Median age was 64 years, and 49.4% of the sample were men. Besides hypertension, most of the participants had dyslipidemia (71.7%) and 23.5% were diabetic. Overall, 120 (12.3%) had already a history of an established cardiovascular disease. From those free of vascular disease at baseline, total cardiovascular risk was estimated by means of the REGICOR risk charts; the majority of the participants belonged to the moderate or high risk categories (median=6 [4–9]).

Regarding BP, mean systolic and diastolic BP were 141.5 and 77.5 mm Hg, respectively. All patients had been recommended to follow lifestyle recommendations to control their BP, and also the vast majority (95.4%) were taking antihypertensive drugs at the time of the study entry (40.2% monotherapy, 37.2% were on 2 drugs, 18% on ≥3 drugs). Only 54% of participants self-reported correct treatment compliance.

Table 2. Univariate Analysis: Description of Demographic and Clinical Baseline Factors in the Total Sample and in Those With or Without SBIs

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>All Patients</th>
<th>Absence of SBI (n=877)</th>
<th>Presence of SBI (n=99)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y*</td>
<td>64 (60–67)</td>
<td>64 (59.5–67)</td>
<td>65 (61.7–69)</td>
<td><0.01</td>
</tr>
<tr>
<td>Sex, male*</td>
<td>49.4%</td>
<td>46.9%</td>
<td>71.7%</td>
<td><0.01</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>15.2%</td>
<td>15.3%</td>
<td>14.1%</td>
<td>0.76</td>
</tr>
<tr>
<td>Alcohol abuse</td>
<td>6.4%</td>
<td>6.7%</td>
<td>4.8%</td>
<td>0.78</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>23.5%</td>
<td>22.7%</td>
<td>30.3%</td>
<td>0.09</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>71.7%</td>
<td>70.8%</td>
<td>79.6%</td>
<td>0.07</td>
</tr>
<tr>
<td>Abdominal obesity</td>
<td>72.7%</td>
<td>72.7%</td>
<td>72.4%</td>
<td>0.95</td>
</tr>
<tr>
<td>Body mass index, kg/m²</td>
<td>29.9 (27.1–33.2)</td>
<td>30.0 (27.1–33.2)</td>
<td>29.9 (26.9–33)</td>
<td>0.86</td>
</tr>
<tr>
<td>Mean office SBP, mm Hg</td>
<td>141.5 (132–153)</td>
<td>141.5 (132–153)</td>
<td>144 (130–155.6)</td>
<td>0.69</td>
</tr>
<tr>
<td>Mean office DBP, mm Hg*</td>
<td>77.5 (71–84)</td>
<td>77.5 (70.5–84)</td>
<td>81.5 (72.8–89.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Duration of hypertension, y</td>
<td>8.6 (5.3–12.4)</td>
<td>9.1 (5.7–12.8)</td>
<td>8.8 (4.5–12.8)</td>
<td>0.52</td>
</tr>
<tr>
<td>REGICOR score*</td>
<td>6 (4–9)</td>
<td>6 (4–8)</td>
<td>7 (5–10.75)</td>
<td><0.01</td>
</tr>
<tr>
<td>Previous cardiovascular disease*</td>
<td>12.3%</td>
<td>11.2%</td>
<td>22.2%</td>
<td><0.01</td>
</tr>
<tr>
<td>No. of antihypertensives</td>
<td>2 (1–2)</td>
<td>2 (1–2)</td>
<td>2 (1–2.75)</td>
<td>0.18</td>
</tr>
<tr>
<td>Treatment compliance</td>
<td>54.4%</td>
<td>54.8%</td>
<td>50.5%</td>
<td>0.43</td>
</tr>
</tbody>
</table>

*Significant results.
SBIs and Their Associated Factors

A total of 99 participants had SBIs, leading to a prevalence of 10.1% of the sample (95% confidence interval, 8.4%–12.2%). Most of the patients had a single lesion (69%), whereas 31% presented multiple lesions (ranging 2–11), accounting for a total number of 163 infarcts. The majority of lesions were located in the basal ganglia (35.6%) or subcortical white matter (28.8%), followed by the cerebellum (16%), brain stem (11%), and cortex (8.6%).

As expected, increasing age was related to the presence of SBIs but also sex differences were found. Prevalence of SBIs was gradually increased for both sexes with age, but they were more often in men than in women at any age category. However, men and women differed in the frequency of many baseline characteristics as shown in Table S1 (online-only Data Supplement).

Other baseline differences in SBIs presence about vascular risk factors, total cardiovascular risk, or BP levels are shown in Table 2.

Finally, because subclinical organ damage may affect prognosis in hypertensives, we evaluated the kidney function by means of urine albumin-to-creatinine ratio and estimated GFR. After exclusion of 10 participants who showed serum creatinine levels (>132.6 μmol/L in men and 114.9 μmol/L in women) or proteinuria (urine albumin-to-creatinine ratio ≥300 mg/g at least once) suggestive of overt nephropathy, 13.7% presented microalbuminuria, 7.8% had low estimated GFR, and in 1.1% of participants both alterations were present. Also, left ventricular hypertrophy was detected as signature of hypertensive heart damage in 9.1% of the cohort.

Looking into how these markers of TOD were interrelated, we found that microalbuminuria was associated with the presence of SBIs (27.2% in those with microalbuminuria versus 12.2% in those without it, P<0.001), whereas finding a decreased GFR or left ventricular hypertrophy presence was not (P=0.25 and P=0.22, respectively).

In Table 3, we present results from the multivariate analyses. Increasing age, male sex, and microalbuminuria (model 1) were all independently associated with SBIs. Moreover, because current guidelines support that diagnosis and management of hypertension should be related to quantification of global (or total) cardiovascular risk, we included in the analysis the Framingham-calibrated REGICOR score (model 2) and found that it was also predictor of SBIs, in addition to microalbuminuria. A graded response was found between REGICOR risk categories and SBI, with the strongest associations corresponding to those at high or very high-risk categories.

It should be noted that despite the fact that microalbuminuria was independently associated with SBIs in both models, in our sample, still 66% of the participants with SBIs had no renal or heart involvement.

Discussion

Here, we described the prevalence of SBIs in a large Mediterranean cohort of middle- and old-aged hypertensives. SBIs were found in 10.1% of participants, a prevalence that is similar to other population-based studies but lower than that reported in hypertensive cohorts. Although this might be surprising, several differences should be noted between ours and previous studies in hypertensives, apart from ethnicity, as mentioned before. First, our population was younger and the majority of our participants was long-term (median 8.6 years since diagnosis) and treated hypertensives with office BP levels that were lower as compared with previous studies selecting hypertensives (Table 1).3–5,17 Most importantly, the selection of participants was performed randomly from a primary care setting. The cohort was routinely treated and monitored by general practitioners, avoiding the bias that might be caused by selection in more specialized contexts, such as hospital units. Moreover, our sample size was estimated taking into account previous studies on this matter in general populations, and to date, it is almost twice larger than that of previous studies in a purely hypertensive cohort.

We found that SBIs were strongly associated with age, as it has been shown consistently before, and much more frequent in hypertensive men than women. This is also remarkable, taking into account that stroke is the leading cause of death for women in our country. Other population-based studies, such as the Rotterdam Scan Study31 and the Cardiovascular Health Study,32 found opposite results, with more SBIs in women than in men, although their participants were older than ours. In opposition, our results agree with those from the Northern Manhattan Study, a multiethnic community-based cohort.33 It is well known that women have lower BP levels across the lifespan than their age-matched counterparts. However, hypertension becomes increasingly prevalent in postmenopausal women.34 We randomized participants taking into both sex and age, but still several differences were found in the distribution of vascular risk factors, with women displaying less global vascular risk and comorbidities than men in our cohort. These differences might explain the lower prevalence of SBIs in women. It is also possible that because we did not perform ambulatory BP monitoring to select participants, some of them might have indeed a white coat effect. This condition is associated with an intermediate risk of cardiovascular events between those with sustained hypertension and normotensive individuals, and it is described to be particularly frequent in women.35 However, we
excluded participants with suspected white coat hypertension, and the vast majority of them had been treated for a long time before inclusion, thus making this possibility less likely.

Our results, therefore, emphasize the need to uncover sex differences to better understand pathological processes associated with aging and stroke and to personalize preventive health care.

We also found an independent association between microalbuminuria and SBIs. This is important because these results extend previous knowledge on the role of microalbuminuria as predictive marker of cardiovascular events and stroke risk.36 Less is known on how microalbuminuria is interrelated to other subclinical TOD, such as that present in the brain. Specifically, this was reported in hypertensives by Henskens et al37 in a cohort of 192 young untreated hypertensives, in whom different TOD markers were evaluated, including microalbuminuria. Interestingly, although the proportion of subjects with damage in heart, kidney, brain, or any combination of them was higher in that study than in our population, half of the patients with brain damage (including SBIs but also other lesions such as white matter hyperintensities or microbleeds) did not present cardioareal damage and were classified as having no-target organ involvement. Likewise, in our study, in almost 66% of those with SBIs, these lesions did not coexist with heart or kidney involvement, which are the organs routinely screened to assess risk in hypertension. Although both Henskens et al37 and our results suggest that screening for SBI might improve risk stratification in hypertensives, longitudinal studies with stroke (and possibly other vascular events) as outcomes are needed to determine their predictive value.

Microalbuminuria is generally interpreted as an early sign of kidney disease or as a marker of endothelial dysfunction.37 As kidney and brain display common hemodynamic properties such as low vascular resistance, as compared with other vascular beds, they might be unprotected against increased pulsatile stress occurring with aging and hypertension.38 This could lead to endotheal damage and progress toward both the appearance of microalbuminuria and brain infarcts, even in the absence of an impaired kidney function. However, to properly address the occurrence of these events over time, prospective studies are needed.

Finally, we found that total cardiovascular risk is not only associated with the odds of symptomatic future vascular events but also related to the presence of subclinical brain disease. These results are in agreement with those reported in the Framingham Offspring cohort study,39 but as original Framingham function scores overestimate risk in low-risk countries such as Spain,20 we used a validated and easy-to-use tool (REGICOR) that is already extensively used by general practitioners in our area. In our study, total cardiovascular risk predicted the presence of SBIs better than any risk factor taken separately, highlighting the importance of treating patients preferably according to their estimated global cardiovascular risk, rather than based on the presence of any individual risk factor.

Strengths and Limitations

This study has some strengths and some limitations. As strengths, this is a large study, representative for a population of middle-aged hypertensives living in a low cardiovascular risk country in the Mediterranean area.

Moreover, inclusion procedures required careful review of medical records and interview with the participants to remove nonessential hypertension and rule out participants with previous stroke or dementia. We also have some limitations. Lack of ambulatory BP monitoring for selecting participants might have led to increased frequency of white coat hypertension effect. Urine albumin-to-creatinine ratio was measured in this study with a single-spot urine sample. In clinical practice, it is recommended to confirm this observation with multiple testing, to avoid false-positive results attributable to variability of the measurement. Also hypertensive heart damage could be determined with higher accuracy with the use of echocardiography or other imaging techniques.

Perspectives

This study characterizes the prevalence and risk factors of SBIs in a large hypertensive cohort, from a low cardiovascular risk country in the Mediterranean area. Other markers of TOD, such as microalbuminuria, or total cardiovascular risk are independently associated with silent brain vascular disease and might be useful to screen those at high risk of future stroke and dementia, while taking into account sex differences in the design of preventive strategies.

Acknowledgments

Sources of Funding

This research has been funded with grants from the Fondo de Investigaciones Sanitarias (PI10/0705), the Spanish Ministry of Health (EC10/336), the Catalan Society of Hypertension (6th Grant Research on hypertension), and the Catedra-UBH Novartis de Medicina de Familia. I. Riba-Llena is the recipient of a research contract from the Spanish Ministry of Health (Instituto de Salud Carlos III-CM10000063) cofounded by Vall d’Hebron Research Institute. C. I. Turca and C. Nafria have received support from IDIAP Jordi Gó and P. Delgado was supported by the Miguel Servet program (CP09136) from the Spanish Ministry of Health (Instituto de Salud Carlos III). Neurovascular Research Laboratory receives funding support from URIACH and takes part in the Spanish stroke research network INVICTUS (RD1200140005).

Disclosures

None.

References

Prevalence and Associated Factors of Silent Brain Infarcts in a Mediterranean Cohort of Hypertensives

Pilar Delgado, Iolanda Riba-Llena, José L. Tovar, Carmen I. Jarca, Xavier Mundet, Antonio López-Rueda, Francesc Orfila, Judit Llussà, Josep M. Manresa, José Alvarez-Sabín, Cristina Nafría, José L. Fernández, Olga Maisterra and Joan Montaner on behalf of ISSYS Investigators*

Hypertension. 2014;64:658-663; originally published online June 23, 2014; doi: 10.1161/HYPERTENSIONAHA.114.03563

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/64/3/658

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2014/06/23/HYPERTENSIONAHA.114.03563.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
FULL TITLE: PREVALENCE AND ASSOCIATED FACTORS OF SILENT BRAIN INFARCTS IN A MEDITERRANEAN COHORT OF HYPERTENSIVES

Authors

Pilar Delgado1,*, Iolanda Riba-Llena1, José L Tovar2, Carmen I. Jarca3, Xavier Mundet4, Antonio López-Rueda1, Francesc Orfila4, Judit Llussà5, Josep M Manresa6, José Álvarez-Sabin7, Cristina Nafria1, José L Fernández6, Olga Maisterra7, Joan Montaner1,7, on behalf of ISSYS Investigators.

Author’s affiliations:

1Neurovascular Research Laboratory. Vall Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona. 2Nephrology Service. Vall Hebron’s University Hospital. 3Emergency Department, CUAP Horta. 4Barcelona city Research Support Unit-IDIAP Jordi Gol, Universitat Autònoma de Barcelona. 5Equip d’Atenció Primària Sant Roc, Institut Català de la Salut, Badalona, Spain. 6Unitat de Suport a la Recerca Metropolitana Nord, IDIAP Jordi Gol, Sabadell, Spain. 7Department of Neurology. Neurovascular Section. Vall Hebron’s University Hospital, Barcelona, Spain. 8Neurorradiology. Clínica Dr. Manchón, Barcelona

Short Title: Silent brain infarcts in Mediterranean hypertensives

Word count: main text (5326), tables (576)

Correspondence to: Dr. Pilar Delgado

Neurovascular Research Lab, Vall d’Hebron Research Institute (VHIR), Passeig Vall d’Hebron, nº 119-129, CP 08035 Barcelona, Spain

Phone: +34-934894029, Fax: +34-934894015, e-mail: pilar.delgado@vhir.org
Expanded Materials and Methods:

Covariates definition:

- Hypertension was defined as systolic blood pressure (BP) \(\geq 140 \text{ mmHg} \), diastolic BP \(\geq 90 \text{ mmHg} \) and/or use of antihypertensive medication.

- Duration of hypertension was assessed as the time from first diagnosis to inclusion visit, and it was expressed in years.

- Diabetes mellitus was defined as fasting glucose levels over 7 mmol/L and/or the use of oral antidiabetic drugs or insulin.

- Dyslipidemia was defined as total cholesterol over 5.2 mmol/L, triglycerides over 2.3 mmol/L and/or the use of lipid lowering treatments.

- Alcohol abuse was defined as \(\geq 280 \) grams per week in males and \(\geq 170 \) grams per week in females.

- Smoking habit was categorized into current, former or never.

- Previous cardiovascular disease includes coronary artery disease (angina, myocardial infarction) and peripheral artery disease (intermitent claudication, by-pass surgery, aortic aneurism).

- Previous kidney disease: presence of diabetic or hypertensive nephropathy and/or renal failure.

- Systemic disease: including any other disease affecting a number of organs and tissues.

- REGICOR function: it is a Framingham-calibrated function for 10-year cardiovascular risk calculation. It includes age, gender, tobacco intake, diabetes, systolic and diastolic BP, total and HDL-cholesterol. An online calculator can be found at: http://www.imim.cat/ofertadeserveis/software-public/regicor/?1

- BP control: Optimal BP control was defined as BP<140/90 (or <130/80 in diabetic and those at high or very high risk, such as those with clinical conditions, including myocardial infarction, renal failure or proteinuria).

- Treatment compliance was assessed with the Moriski questionnaire. This scale consists in 4 questions, with yes/no answers which should be asked along the clinical interview, and reflect the patient’s attitude towards treatment. It is useful to find out whether or not the patient is a good complier (all questions answered as no) and the causes for non-adherence.

- Abdominal obesity was defined as a waist circumference \(> 88 \) centimeters in females and \(> 102 \) cms in males, according to the European Society of Hypertension.
<table>
<thead>
<tr>
<th>Variables</th>
<th>Women (n=494)</th>
<th>Men (n=482)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>64 (59-67)</td>
<td>63 (58-67)</td>
<td>0.14</td>
</tr>
<tr>
<td>Tobacco use</td>
<td>9.3%</td>
<td>21.2%</td>
<td><0.001</td>
</tr>
<tr>
<td>Alcohol abuse</td>
<td>6.1%</td>
<td>6.6%</td>
<td>0.82</td>
</tr>
<tr>
<td>Diabetes</td>
<td>20.2%</td>
<td>26.8%</td>
<td>0.016</td>
</tr>
<tr>
<td>Dyslipidemia</td>
<td>71.3%</td>
<td>72.1%</td>
<td>0.79</td>
</tr>
<tr>
<td>Abdominal obesity</td>
<td>83.8</td>
<td>61.1</td>
<td><0.001</td>
</tr>
<tr>
<td>Body mass index (Kg/m2)</td>
<td>30.3 (26.9-34.4)</td>
<td>29.7 (27.2-32.1)</td>
<td>0.036</td>
</tr>
<tr>
<td>Mean office SBP</td>
<td>143 (133-154)</td>
<td>140.5 (130-151)</td>
<td>0.035</td>
</tr>
<tr>
<td>Mean office DBP</td>
<td>76 (69.1-81.5)</td>
<td>80 (73-86)</td>
<td><0.001</td>
</tr>
<tr>
<td>Duration of hypertension, years</td>
<td>9.4 (5.9-12.9)</td>
<td>7.9 (5-12.1)</td>
<td>0.002</td>
</tr>
<tr>
<td>Resistant hypertension</td>
<td>4.1%</td>
<td>5.1%</td>
<td>0.47</td>
</tr>
<tr>
<td>REGICOR score</td>
<td>5 (4-7)</td>
<td>7 (5-11)</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous cardiovascular disease</td>
<td>6.5%</td>
<td>18.3%</td>
<td><0.001</td>
</tr>
<tr>
<td>Number of antihypertensives</td>
<td>2 (1-2)</td>
<td>2 (1-2)</td>
<td>0.29</td>
</tr>
<tr>
<td>Treatment compliance</td>
<td>57.2%</td>
<td>51.4%</td>
<td>0.079</td>
</tr>
</tbody>
</table>

Data are expressed in median (interquartile range), mean +/- standard deviation and percentage as appropriate. SBP: Systolic blood pressure is expressed in mmHg, DBP: diastolic blood pressure, is expressed in mmHg. *p<0.05.