The term endothelial dysfunction generally refers to a mal-adapted endothelial phenotype characterized by reduced nitric oxide (NO) bioavailability, increased oxidative stress, elevated expression of proinflammatory and prothrombotic factors, and reduced endothelial-derived vasodilation. Hyperglycemia, insulin resistance, dyslipidemia, hyperuricemia, increased dietary fructose, and fat are conditions that predispose endothelial dysfunction, an early precursor to increased vascular and cardiac stiffness and atherosclerosis, all risk factors for hypertension, myocardial infarction, stroke, limb ischemia, and heart failure. Thus, endothelial dysfunction is an important risk factor for cardiovascular disease (CVD)—related morbidity and mortality.

Recently, cross-sectional studies suggested that endothelial dysfunction also independently predicts the incidence of type 2 diabetes mellitus (T2D). For example, a prospective study of the children and spouses of children from the original Framingham Heart Study cohort found that high levels of endothelial cell (EC)–derived Willebrand factor increased the risk of developing T2D independent of other risk factors for diabetes mellitus, including obesity, abnormal glucose metabolism, and inflammation. Similarly, in a large, prospective, nested case–control study from an ethnically diverse cohort of US postmenopausal women (Women’s Health Initiative Observational Study), higher levels of circulating E-selectin and intercellular adhesion molecule-1 were consistently associated with increased risk of developing T2D. Both studies support a potential causal role for endothelial dysfunction in insulin resistance.

Animal studies have demonstrated impaired vascular insulin metabolic signaling because of activation of serine/threonine kinases in the condition of endothelial dysfunction. Activation of various serine kinases, such S6 kinase, increases serine phosphorylation of insulin receptor substrate proteins and subsequently results in vascular insulin resistance and associated endothelial dysfunction (Figure 1). Increased serine phosphorylation of insulin receptor substrate protein leads to decreased activity of insulin downstream signaling pathways, including phosphatidylinositol 3-kinase and protein kinase B, which culminates in reduced endothelial NO synthase activation, increased vascular smooth muscle calcium sensitization, and reduced vasodilation. Furthermore, hyperinsulinemia associated with systemic insulin resistance stimulates the production of the vasoconstrictor endothelin-1 via a mitogen-activated protein kinase–dependent signaling pathway. Thus, endothelial insulin resistance is accompanied by reduced phosphatidylinositol 3-kinase–NO pathway and heightened mitogen-activated protein kinase–endothelin-1 pathway (Fig.1). Indeed, vascular homeostasis is tightly controlled by ECs secreting the vasodilatory substances, such as NO, endothelium-derived hyperpolarizing factor, prostacyclin, and vasoconstrictory substances such as endothelin-1, angiotensin II, aldosterone, and thromboxane A2. The net balance of these EC vasoactive substances has been proposed to mediate the link between insulin resistance and hyperinsulinemia and CVD. Thus, endothelial dysfunction has been suggested as a common underlying mechanism that links systemic and vascular insulin resistance and development of T2D. It is noted that systemic insulin resistance and T2D can then accelerate EC functional impairment, and this sets up a bidirectionality between endothelial dysfunction and T2D, wherein endothelial dysfunction and systemic metabolic abnormalities interact in a vicious cycle to accelerate CVD.

The Hoorn Study was designed to determine the prevalence of T2D and associated risk factors in a population-based cohort study of 2484 patients from 1989. In this study, investigators reported an interaction between endothelial dysfunction and impaired glucose metabolism, insulin resistance and T2D, respectively, with regard to the risk of CVD events. Impaired glucose metabolism and insulin resistance was ascertained via oral glucose tolerance test and homeostasis model assessment–insulin resistance testing, respectively. Endothelial function was evaluated by flow-mediated dilatation of the brachial artery. The results of this study confirmed and extended previous reports on the joint interactive effects of endothelial dysfunction, impaired glucose metabolism, and insulin resistance on incident cardiovascular events. The present study provides strong evidence that endothelial dysfunction, T2D, and insulin resistance synergistically increase CVD and, therefore, identifies endothelial dysfunction as a key therapeutic target in persons with underlying metabolic abnormalities.

However, there are some caveats of these studies that need consideration. Although flow-mediated dilatation is a noninvasive approach and has become the most widely used technique to measure endothelial function, flow-mediated dilatation measures the endothelial vasomotor response during
reactive hyperemia and does not identify abnormalities related to the EC production of vasoactive substances in basal and other states under which endothelial function is evaluated. A new technique, low-flow–mediated constriction, may provide complementary information to flow-mediated dilatation because low-flow–mediated constriction response is not solely based on NO availability, but also mediated by other EC-derived substances, including endothelin-1, endothelium-derived hyperpolarizing factor, and cyclooxygenase. Second, this study provides information on other medications used by study participants that could potentially affect systemic and vascular insulin sensitivity and CVD events. Several therapeutic interventions that may impact insulin sensitivity and CVD have been reported, such as metformin, statin therapy, renin–angiotensin–aldosterone antagonists, and arginine supplementation. It is noted in the Diabetes Reduction Assessment Study that in the 5269 patients followed up for 3 years, ramipril increased regression to normoglycemia but did not significantly reduce the primary end point of new-onset T2D. The reason is that angiotensin-converting enzyme inhibitor may need a relative long time to restore the islet β-cell function or increase β-cell number, which is a function of T2D.

Nevertheless, this study provides further evidence that endothelial dysfunction is inextricably related to metabolic abnormalities and that this combination of hemodynamic and metabolic abnormalities synergistically increases CVD event risk. It is conceivable that therapeutic strategies directed at improving vascular insulin metabolic signaling and endothelial dysfunction may lead to an improvement of systemic metabolic abnormalities and combinatorially reduce CVD. Future studies should further confirm that endothelial function protection is indeed associated with a concomitant reduction in T2D and CVD events.

Acknowledgments

We thank Brenda Hunter for her editorial assistance.

Figure. Proposed molecular mechanism for insulin resistance in endothelial dysfunction. eNOS indicates endothelial NO synthase; ET-1, endothelin-1; IKKβ, IκB kinase; IRS-1/2, insulin receptor substrate 1/2; JNK, c-Jun N-terminal kinase; MAPK, mitogen-activated protein kinase; mTOR, mammalian target of rapamycin; NO, nitric oxide; PI3-K/Akt, phosphatidylinositol 3-kinase/ protein kinase B; PKC, protein kinase C; and S6K, ribosomal S6 kinase.

Source of Funding

J.R. Sowers is funded by National Institutes of Health (R01 HL73101-01A and R01 HL107910-01) and the Veterans Affairs Merit System (0018).

Disclosures

None.

References


Key Words: cardiovascular disease ■ population ■ type 2 diabetes mellitus
Endothelial Dysfunction Potentially Interacts With Impaired Glucose Metabolism to Increase Cardiovascular Risk
Guanghong Jia and James R. Sowers

Hypertension. 2014;64:1192-1193; originally published online September 15, 2014; doi: 10.1161/HYPERTENSIONAHA.114.04348
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/64/6/1192

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/