Clinical Trials

Systolic and Diastolic Blood Pressure Changes in Relation With Myocardial Infarction and Stroke in Patients With Coronary Artery Disease

Paolo Verdecchia, Gianpaolo Reboldi, Fabio Angeli, Bruno Trimarco, Giuseppe Mancia, Janice Pogue, Peggy Gao, Peter Sleight, Koon Teo, Salim Yusuf

See Editorial Commentary, pp 39–40

Abstract—Excessively high and low achieved blood pressure (BP) may be associated with a bad outcome in patients with coronary artery disease, the J curve phenomenon. The effect of BP changes from baseline in relation with the subsequent risk of stroke and myocardial infarction (MI) is unknown. Of the 25 620 patients randomized in the Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET) study, we selected 19 102 patients with coronary artery disease at baseline. BP at entry was 141/82 mm Hg, and its average decrease during follow-up was 7/6 mm Hg. BP entered the analysis as time-varying variable modeled with restricted cubic splines. After adjustment for several potential determinants of reverse causality, a change in BP from baseline by –34 to –21 mm Hg (10th percentile) was associated with a lesser risk of stroke without any significant increase in the risk of MI. A rise in systolic/diastolic BP from baseline by 20/10 mm Hg (90th percentile) was associated with an increased risk of stroke, whereas the risk of MI increased with systolic BP and not with diastolic BP. In conclusion, in patients with coronary artery disease and initially free from congestive heart failure, a BP reduction from baseline over the examined BP range had little effect on the risk of MI and predicted a lower risk of stroke. An increase in systolic BP from baseline increased the risk of stroke and MI. The relationships of BP with risk were much steeper for stroke than for MI. A treatment-induced BP reduction over the explored range seems to be safe in patients with coronary artery disease.

Clinical Trial Registration—URL: http://www.clinicaltrials.gov. Unique identifier: NCT00153101. (Hypertension. 2015;65:108-114. DOI: 10.1161/HYPERTENSIONAHA.114.04310.) • Online Data Supplement

Key Words: blood pressure ▪ coronary artery disease ▪ myocardial infarction ▪ prognosis ▪ stroke

After the initial observations by Anderson, Stewart, and Cruickshank et al, several individual studies and reviews suggested that in the presence of established coronary artery disease (CAD), excessively low levels of achieved blood pressure (BP) might be harmful, possibly by precipitating myocardial ischemia. Two recent large studies reported similar findings in patients with diabetes mellitus. The exact point of inflection of the J curve remains undefined, but it is relevant to the clinical management of patients. The possibility has been raised that adverse outcomes in patients with excessively low BP may be because of unfavorable effect of concomitant high-risk conditions associated with low BP but not to the BP reduction induced by treatment. Although sophisticated statistical analyses of available studies tend to correct for these imbalances along the different points of the J curve, adjustment may not be adequate to disclose, and correct for, all potential determinants of reverse causality.

An additional approach to the J curve phenomenon may be the relationship between BP changes from baseline and the subsequent outcome. Indeed, interpreting the J curve phenomenon in the sense that an excessive BP reduction should be avoided would require an analysis of the BP changes over time, in addition to that of achieved BP levels. Such an approach would help to clarify whether a J-shaped relationship exists not only with achieved BP levels but also with the changes in BP over time.

To this purpose, we analyzed the patients with established CAD enrolled in the Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET). Because the study did not show any statistical interaction

Received July 23, 2014; first decision August 20, 2014; revision accepted September 4, 2014.

From the Department of Medicine, Hospital of Assisi, Assisi, Italy (P.V.); Department of Medicine (G.R.) and Department of Cardiology and Cardiovascular Pathophysiology (F.A.), University Hospital of Perugia, Perugia, Italy; Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University ‘Federico II’, Naples, Italy (B.T.); Department of Health Sciences, University of Milano-Bicocca and IRCCS Istituto Auxologico Italiano, Milano, Italy (G.M.); Department of Clinical Epidemiology and Biostatistics and Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada (J.P., P.G., K.T., S.Y.); and Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, United Kingdom (P.S.).

This article was sent to David Calhoun, Guest Editor, for review by expert referees, editorial decision, and final disposition.

The online-only Data Supplement is available with this article at http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA.114.04310/-/DC1.

Correspondence to Paolo Verdecchia, Department of Medicine, Hospital of Assisi, Via Valentin Muller 1, 06081-Assisi, Italy. E-mail verdec@tin.it

© 2014 American Heart Association, Inc.

Hypertension is available at http://hyper.ahajournals.org DOI: 10.1161/HYPERTENSIONAHA.114.04310
between outcomes and treatment allocation (telmisartan, ramipril, or their combination), we pooled the 3 study groups. The parallel Telmisartan Randomised AssesseMeNT Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) study was not examined to allow proper adjustment for randomized treatment. We restricted the analysis to patients with CAD because coronary autoregulation distal to epicardial stenosis is more likely to be compromised in these patients at low BP values.15

Methods

The ONTARGET study was a double-blind, placebo-controlled trial conducted in patients at high cardiovascular risk without known left ventricular systolic dysfunction or congestive heart failure at entry. The protocol16 and the main results14 of the study have been published. Patients were randomized to the angiotensin-converting enzyme inhibitor ramipril, the angiotensin receptor blocker telmisartan, or their combination. The primary outcome was a composite of death from cardiovascular causes, myocardial infarction (MI), stroke, or hospitalization for congestive heart failure. According to the protocol, clinical data continued to be collected after a primary outcome event until patients died.16

The median follow-up period was 56 months. We allowed continuation of previous background treatments and addition of antihypertensive drugs other than angiotensin-converting enzyme -inhibitors or angiotensin receptor blocker s. Follow-up visits were performed at 6 weeks, at 6 months, and then every 6 months until the last scheduled visit. BP values from baseline to the final protocol visit, or to the visit immediately preceding an event, were considered for the analysis. At each of the visits, we measured BP in duplicate after 3 minutes rest in the sitting position using an automated validated17 device (OMRON, model HEM-757).

We defined left ventricular hypertrophy in a binary (yes/no) fashion by one or both of the following: (1) sum of the R wave in lead aVL and depth of the S wave in lead V3>2.0 mV in women and ≥2.4 mV in men or (2) strain pattern in ≥1 of the following leads: I, II, aVL, or V4 to V618. Glomerular filtration rate was estimated through the Modification of Diet in Renal Disease formula19.

Outcomes of the present study were fatal plus nonfatal MI and stroke. Definition and adjudication procedures of outcome events have been published.14,15 The study is registered with ClinicalTrials.gov, number NCT00153101.

Data Analysis

We used the SAS version 9.2 (SAS Institute, Cary, NC). For all tests, a 2-tailed \(\chi^2\) was required for statistical significance. Data are presented as mean and SD for continuous variables and as numbers (\%) for categorical variables. For all outcomes, unadjusted and adjusted hazard ratios (HR) were estimated using extended Cox proportional hazards models.20

The relationship between outcome events and BP was modeled by including both linear and nonlinear (restricted cubic spline) terms for either subsequent BP measurements or BP changes relative to each patient’s baseline measurement, until event or censoring, as continuous time-varying covariates.21,22 A distinctive advantage of the restricted cubic spline method is that no particular functional form needs to be specified. Restricted cubic spline terms were thus used to characterize the functional form of the association between BP and outcome and to check the assumption of linearity of the association visually and statistically.22

We addressed the potential nonlinearity in the association between BP measures and outcomes by using 3 knots located at the 10th, 50th, and 90th percentiles of time-varying BP measures, which correspond to systolic BP (SBP) and diastolic BP (DBP) values of 118/68, 140/82, 160/95 mm Hg and to SBP/DBP changes from baseline of –34/–21, –7/–6, +20/10 mm Hg. We used a Wald test for the regression coefficients of BP variables (ie, linear and spline) to test the null hypothesis that BP had no effect. We applied the same test to the coefficients of the spline variables to test the null hypothesis that the effect of BP on outcomes was linear.22,23

We initially conducted unadjusted analyses (not reported) using time-varying BP or BP changes as predictor variables and subsequently adjusted for the following variables: age, sex, race, smoking, diabetes mellitus, history of MI, history of atrial fibrillation, history of stroke, history of transient ischemic attack, history of peripheral occlusive disease, and randomized treatment (ramipril, telmisartan, and ramipril plus telmisartan). Incident cancer and incident MI entered the models as binary time-dependent covariate, whereas estimated glomerular filtration rate was included as a continuous time-varying covariate. Models with BP changes as predictor variables were further adjusted for baseline SBP and DBP to control for regression to the mean.

Results

Of the 25,620 patients randomized, we selected 19,102 patients with documented history of CAD at the baseline visit. Documented history of CAD included previous MI, stable or unstable angina, coronary artery bypass surgery, or percutaneous transluminal angioplasty. The Table shows the main characteristics of the study population. During follow-up, 1,097 patients developed a MI and 713 patients developed a stroke. The rate of MI was 1.29 per 100 patient-years and that of stroke was 0.83 per 100 patient-years.

Prognostic Effect of BP Changes From Baseline to Follow-Up

The upper left panel of Figure 1 shows the relationship between the changes in SBP from baseline to follow-up, expressed as time-varying variable, and the risk of MI, after adjustment for confounders (Table S1 in the online-only Data Supplement). Of note, although BP at baseline >160/100 mm Hg was an exclusion criterion in ONTARGET, some patients developed higher BP levels during follow-up. The shape of the relationship was nonlinear (\(\chi^2=5.74; P=0.0166\)), with a significant rise in the risk of MI in association with the rise in SBP from baseline. Conversely, there was no significant increase in the risk of MI with a drop in SBP from baseline. Compared with the reference value (~7 mm Hg), the adjusted HR for MI was 1.20 (\(P=0.0032\)) for a rise in SBP by 20 mm Hg (90th percentile), and 1.05 (\(P=0.51\)) for a reduction in SBP of –34 mm Hg (10th percentile).

The upper right panel of Figure 1 shows the relationship between the time-varying changes in DBP from baseline to follow-up and the risk of MI, after adjustment for confounders (Table S2). DBP change was a weak predictor (\(P=0.1202\)), and we found no statistical evidence supporting a nonlinear relationship (\(\chi^2=3.69; P=0.0547\)). There was no significant change in the risk of MI in association with either a rise or a drop in DBP from baseline. Compared with the reference value (~6 mm Hg), the adjusted HR for MI was 1.04 (\(P=0.29\)) for a rise in DBP by 10 mm Hg (90th percentile), and 1.09 (\(P=0.20\)) for a drop in DBP of –21 mm Hg (10th percentile).

The lower left panel of Figure 1 shows the relationship between the time-varying changes in SBP from baseline and the risk of stroke, after adjustment for confounders (Table S3). The shape of the relationship was linear (\(\chi^2=2.50; P=0.1132\)), with a statistically significant change in the risk of stroke in relationship with both a rise and a drop in SBP from baseline. Compared with the reference value (~7 mm Hg), the adjusted HR for stroke was 1.42 (\(P<0.0001\)) for a rise in SBP by 20 mm Hg (90th percentile) and 0.84 (\(P=0.0456\)) for a
reduce in SBP from baseline by −34 mm Hg (10th percentile). Therefore, with a progressively greater reduction in SBP, there was a reduction in the risk of stroke not in that of MI.

The lower right panel of Figure 1 shows the relationship between the time-varying changes in DBP from baseline to follow-up and the risk of stroke, after adjustment for confounders (Table S4). The shape of the relationship was linear (χ²=1.04; P=0.3074), with significant changes in the risk of stroke in association with both a rise and a drop in DBP from baseline. Compared with the reference knot (–6 mm Hg), the adjusted HR for stroke was 1.18 (P<0.0001) for a rise in DBP by 10 mm Hg (90th percentile) and 0.79 (P=0.0456) for a drop in SBP by –21 mm Hg (10th percentile).

Prognostic Effect of Achieved BP

Figure 2 shows the relationships between achieved BP, entered as time-varying variable, and the risk of MI (top) and stroke (bottom). After adjustment for confounders (Table S5), the relationship between achieved SBP and the risk of MI was not significant (P=0.3141), with no evidence of nonlinear association (χ²=1.12; P=0.7314). Neither excessively high nor excessively low achieved SBP levels were associated with a higher, or lower, risk of MI when compared with the reference (HR, 0.96; P=0.43 at 118 mm Hg and HR, 1.07; P=0.22 at 160 mm Hg). But the line for risk of stroke was much steeper than for MI.

After adjustment for confounders (Table S6), the relationship between achieved SBP and the risk of MI was nonlinear (χ²=7.298; P=0.0069) with a J-shaped appearance. However, the adjusted relative hazard of MI at the 90th and 10th percentile of observed SBP levels did not reach formal statistical significance (HR, 1.05; P=0.069 at 95 mm Hg; HR, 1.08; P=0.101 at 68 mm Hg), similar to what was noted with SBP.

The relationship between the risk of stroke and achieved BP (Figure 2, bottom) was linear for SBP (χ²=0.003; P=0.953) and not linear for DBP because the risk changed in a less steep fashion with the rise than with the fall in DBP (χ²=6.6078; P=0.0102). However, both high and low values of achieved DBP were associated with a significant increase and decrease,
by guest on November 11, 2017 http://hyper.ahajournals.org/ Downloaded from

The randomized treatment in the ONTARGET study did not achieve significance in any of the tested relations (Tables S1–S8). Furthermore, none of the interactions between randomized treatment and BP changes from baseline, or achieved BP, yielded statistical significance (see Tables S1–S8 footnote for interaction P values).

Discussion

We addressed for the first time the relationship between the changes in BP from baseline to follow-up and the subsequent outcome, in addition to the analysis of achieved BP done in most previous studies.\(^24\)–\(^26\) Our approach extends our understanding on how far BP should be lowered for several reasons. First, we explored the association between BP and outcome on the basis of formal statistical testing specifically aimed at rejecting the linearity of the relationship, beyond visual inspection of the shape of the curve. To this purpose, we used a restricted cubic spline analysis with 3 knots located at the 10th, 50th, and 90th percentiles of time-varying BP and BP changes from baseline. We used 3 knots to preserve model parsimony and prevent overfitting.\(^25\) Excessively complex models may be affected by statistical noise, the so-called bias-variance trade-off,\(^27\) whereas simpler models may capture the underlying structure better, with greater predictive performance.\(^25\) The 10th and 90th percentiles were chosen to avoid spurious results because of sparse and extreme observations. Second, we adjusted for the effect of several potential determinants of reverse causality, including the randomized treatment in the ONTARGET study. Finally, regardless of the linearity of the relationship between BP and outcome, we formally tested the significance of the risk of events in correspondence of the 10th and 90th percentiles of time-varying achieved BP and BP changes versus the 50th percentile, to clarify the effect, if any, of the relation.

Effects of BP Changes on MI and Stroke

In this study, we did not focus on the primary composite ONTARGET outcome but on MI and stroke as separate end-points. Most of available studies,\(^24\)\(^25\)\(^26\)\(^29\) but not all,\(^30\) did respectively, in the risk of stroke. Tables S7 and S8 show the coefficients of the relationship between achieved SBP and DBP and the risk of stroke.

The randomized treatment in the ONTARGET study did not achieve significance in any of the tested relations (Tables S1–S8). Furthermore, none of the interactions between randomized treatment and BP changes from baseline, or achieved BP, yielded statistical significance (see Tables S1–S8 footnote for interaction P values).

Figure 1. Myocardial infarction and stroke. Adjusted hazard ratio for achieved systolic and diastolic blood pressure changes from baseline (reference level, $-7/6$ mmHg). Results obtained by multivariable Cox regression with restricted cubic splines with 3 knots for systolic and diastolic blood pressure changes.

Figure 2. Myocardial infarction and stroke. Adjusted hazard ratio for achieved systolic and diastolic blood pressure (reference level, 140/82 mmHg). Results obtained by multivariable Cox regression with restricted cubic splines with 3 knots for achieved systolic and diastolic blood pressure.
not find any excess risk of stroke at low values of achieved BP. Conversely, the J-shaped relationship between BP and outcome traditionally applied to coronary events.2,4,24-26,28,29,31 Therefore, the use of the primary composite ONTARGET outcome might have diluted or flattened the shape of the relationship between BP and outcome in correspondence of both high and low values of BP or BP changes from baseline. The same considerations may apply to the composite of cardiovascular and all-cause death, which generally collect clinical conditions characterized by different relationships with BP.

In the present study, a BP reduction from baseline down to \(\approx -34/-21\) mm Hg was associated with a nonsignificant 5% rise in the risk of MI compared with the reference points on the curve (\(-7/-6\) mm Hg). Similar considerations applied to the relationship between achieved DBP and the risk of MI. Therefore, although the relationship between BP changes and the risk of MI remained J-shaped, consistent with previous observations,24-26,28,29 the increased risk associated with a BP reduction down to the bottom 10th percentile of the distribution was actually small and not statistically significant. Importantly, a BP reduction of such magnitude was associated with a marked protection from stroke, the regression line for stroke being much steeper than that for MI. These results are consistent with a recent meta-analysis of studies conducted in patients with type 2 diabetes mellitus; protection from stroke markedly increased with the magnitude of BP reduction, whereas the risk of MI did not show any J-shaped relationship with BP reduction.32 For each 5 mm Hg lower SBP, and each 2 mm Hg lower DBP, the risk of MI decreased by only 2% (\(P=0.79\)) and 1% (\(P=0.83\)).32 The modest protective effect of BP reduction on the risk of MI also emerged in the United Kingdom Prospective Diabetes Study 23 (UKPDS 23), where SBP ranked fourth, after low-density lipoprotein cholesterol, high-density lipoprotein cholesterol, and hemoglobin A\textsubscript{1c}, in a multivariable selection model of the major predictors of CAD.33

Our findings are also consistent with a recent meta-analysis that showed that antihypertensive treatment does not reduce the risk of MI, but strongly lowers the risk of stroke, in patients with BP in the prehypertensive range.34

A further novel finding of our study was the significant rise in the risk of MI associated with the rise in SBP, but not in DBP, from baseline to follow-up. There is experimental evidence that progression of coronary atherosclerosis is associated with a rise in BP. For example, in the setting of the Comparison of Amlodipine Versus Enalapril to Limit Occurrences of Thrombosis (CAMELOT) trial, a higher SBP at follow-up was associated with a greater progression of the volume of atheroma estimated by intracoronary ultrasound, whereas the changes in DBP did not show any association with the volume of atheroma.35

Our study is unable to estimate the risk of MI or stroke beyond the explored BP range although many patients may have experienced a higher cumulative BP drop because they were receiving BP-lowering drugs at their entry in ONTARGET, and consequently their untreated BP would have been higher. Although the prognostic effect of BP changes from baseline was adjusted for baseline BP, extension of our results to excessively low or high values of achieved BP may be misleading. We used 3 knots, as a compromise between model complexity and power,23 located at the 10th, 50th, and 90th percentiles of time-varying SBP/DBP (118/68, 140/82, and 160/95 mm Hg) and BP changes from baseline (\(-34/-21\), \(-7/-6\), and \(20/10\) mm Hg). In a previous analysis of the ONTARGET study, an increased risk of MI and cardiovascular mortality was noted in correspondence of the bottom decile of achieved BP.25 Similarly, in a post hoc analysis of the INternational VErapamil-trandolapril STudy (INVEST), a marked rise in the risk of MI, largely accounting for the J-shaped relationship with BP, was noted at follow-up BP levels \(=110/70\) mm Hg, achieved by only 1% of the population.24 Of note, baseline BP was considerably higher in INVEST than in ONTARGET, with greater potential for reduced coronary perfusion in patients with established CAD and high frequency of coronary artery stenosis.

In a large observational study of patients with type 2 diabetes mellitus extracted from Primary Care Centres in Sweden and followed up for 11 years, Sundström et al8 found a J-shaped relationship between BP and a composite of cardiovascular events and death both in patients receiving and not receiving drug treatment. There are some notable differences between the study of Sundström et al8 and the present study. First, the explored BP range was extremely large in the study of Sundström et al8, spanning between \(<100\) and \(>200\) mm Hg systolic and between \(<20\) and \(>120\) mm Hg diastolic and the J-shaped relationship was largely driven by extreme observations.8 Notably, the flat segment of the J curves in the study of Sundström et al8 almost entirely included the BP range explored in our study. Furthermore, MI have been analyzed separately only in the present study, which also included incident cancer as potential determinants of reverse causality. Reasonably, Sundström et al8 suggests that both in treated and in untreated patients with diabetes mellitus, extremely high or low values of achieved BP portend a worse outcome compared with intermediate values (135–139/74–76 mm Hg for cardiovascular events, 142–150/78–79 mm Hg for mortality). On the basis of the Swedish study, caution has been recommended in pursuing excessively low values of BP in patients with diabetes mellitus.36

Limitations

Although the present study has been conducted in a large population with history of CAD, details of analysis have been defined post hoc. Second, a consistent proportion of patients received concomitant treatment with statins, antiplatelet drugs, and β-blockers, which might have influenced outcome independently of the changes in BP. Finally, the potential effect of nonmeasured confounders cannot be excluded despite extensive adjustment for several fixed and time-varying covariates.

Conclusions

In patients with a history of CAD and initially free of congestive heart failure, a BP reduction from baseline down to \(-34/-21\) mm Hg, corresponding to an achieved BP of 118/68
mm Hg, was associated with a consistent reduction in the risk of stroke without any change in the risk of MI. Conversely, an increased risk of MI occurred in association with a rise in SBP from baseline. Our data indicate no further lowering in the risk of MI at the low SBP levels reported above although the risk of stroke substantially decreased. The 2013 European Society of Hypertension/European Society of Cardiology Guidelines for the management of arterial hypertension recommend lowering BP to below 140 mm Hg systolic and 90 mm Hg diastolic, but the strength of the recommendation is class IIa and the level of the evidence is B.11 DBP levels 80 to 85 mm Hg have been defined as safe and well tolerated (class I, level A) in patients with CAD11 although evidence does not seem conclusive. The recent Eighth Joint National Committee guidelines recommend lower high BP in people aged ≥60 years to levels lower than 150/90 mm Hg to reduce the risk of stroke, heart failure, and coronary heart disease.37 An exception is represented by patients aged ≥60 years with concomitant diabetes mellitus or aged ≥70 years with chronic kidney disease, in whom the BP target has been set more stringent to 140/90 mm Hg. The Eighth Joint National Committee panel did not reach unanimity on such recommendation.37 A minority of members suggested to maintain the SBP target <140 mm Hg even in people aged 60 to 79 years.38 Their justification was the lack of solid evidence from intervention trials that subjects younger and older than 60 years would benefit from different SBP goals (<140 and <150 mm Hg, respectively).38 The present study showed a significant rise in the risk of stroke for an achieved SBP of 150 mm Hg compared with a reference of 140 mm Hg, thereby supporting a more stringent (140 mm Hg) BP target for the prevention of stroke. Caveats are an index population composed of high-risk vascular patients with mean age 66 years and the evidence of CAD at baseline. Notably, even minor changes in SBP from baseline in either direction were predictive of significant changes in the risk of stroke.

Perspectives

Our data suggest that a SBP target of <140 mm Hg is appropriate for the prevention of stroke in patients at high vascular risk with previous evidence of CAD.

Both the European Society of Hypertension/European Society of Cardiology and the Eighth Joint National Committee guidelines recommend obtaining more information in future trials to help clarify the remaining uncertainty.11,13 The present study, conducted in high-risk patients with evidence of CAD, sounds reassuring as to the safety of BP reduction over the explored BP range, even for achieved BP values <130/80 mm Hg. It strongly supports the view that the risk of stroke, but not that of MI, would be consistently lowered at such levels. Our findings support the conclusion of a recent American Heart Association/American Stroke Association Scientific Statement that the decrease in BP with antihypertensive drugs seems to be the major determinant for the reduction in the risk of stroke.29 Future guidelines should emphasize the different effect of a tighter BP control on the risk of stroke and MI. The present analysis should be considered as hypothesis generating and as a further stimulus to randomized controlled trials to test the effect of different BP goals on the risks of stroke and MI taken separately.

Source of Funding

The Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET)/Telmisartan Randomised Assessment Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) study was funded by Boehringer-Ingelheim.

Disclosures

P. Verdecchia, P. Sleight, and S. Yusuf received consulting, lecture fees, and research grants from Boehringer-Ingelheim and from other companies manufacturing angiotensin receptor blockers. K. Teo received lecture fees and research grants from Boehringer-Ingelheim during the conduct of the Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial (ONTARGET)/Telmisartan Randomised Assessment Study in ACE iNtolerant subjects with cardiovascular Disease (TRANSCEND) trials. P. Verdecchia was also supported by the no-profit foundation Fondazione Umbra Cuore e Iper tensione-ONLUS, Perugia, Italy. The other authors report no conflicts.

References

Novelty and Significance

What Is New?

- We addressed for the first time the relationship between the changes in blood pressure from baseline to follow-up and the subsequent outcome in high-risk vascular patients with coronary artery disease.
- In these patients, a change in blood pressure from baseline up to −34/−21 mm Hg is associated with a lesser risk of stroke without any increase in the risk of myocardial infarction.

What Is Relevant?

- The present study is reassuring as to the safety of blood reduction over the explored range, even for achieved blood pressure values <130/80 mm Hg.

Summary

In high-risk vascular patients with coronary artery disease and initially free from congestive heart failure, a blood pressure reduction from baseline over the examined range had little effect on the risk of myocardial infarction and predicted a lower risk of stroke. An increase in systolic blood pressure from baseline increased the risk of stroke and myocardial infarction. A treatment-induced blood pressure reduction over the range explored in the present study was safe in these patients.
Systolic and Diastolic Blood Pressure Changes in Relation With Myocardial Infarction and Stroke in Patients With Coronary Artery Disease
Paolo Verdecchia, Gianpaolo Reboldi, Fabio Angeli, Bruno Trimarco, Giuseppe Mancia, Janice Pogue, Peggy Gao, Peter Sleight, Koon Teo and Salim Yusuf

Hypertension. 2015;65:108-114; originally published online October 20, 2014;
doi: 10.1161/HYPERTENSIONAHA.114.04310
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2014 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/65/1/108

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2014/10/20/HYPERTENSIONAHA.114.04310.DC1
http://hyper.ahajournals.org/content/suppl/2016/04/10/HYPERTENSIONAHA.114.04310.DC2
http://hyper.ahajournals.org/content/suppl/2016/04/11/HYPERTENSIONAHA.114.04310.DC3

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Systolic and Diastolic Blood Pressure Changes in Relation to Myocardial Infarction and Stroke in Patients with Coronary Artery Disease

Paolo Verdecchia¹, Gianpaolo Reboldi², Fabio Angeli³, Bruno Trimarco⁴, Giuseppe Mancia⁵, Janice Pogue⁶, Peggy Gao⁶, Peter Sleight⁷, Koon Teo⁶, Salim Yusuf⁶

¹Department of Medicine, Hospital of Assisi, Italy. ²Department of Medicine, University of Perugia, Italy. ³Department of Cardiology and Cardiovascular Pathophysiology; University of Perugia, Italy. ⁴Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University ‘Federico II’, Naples, Italy. ⁵IRCCS Istituto Auxologico Italiano, Milano and University of Milano-Bicocca, Milano, Italy. ⁶Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada. ⁷Cardiovascular Medicine, Level 6, West Wing, John Radcliffe Hospital, Oxford UK.

Short title: Blood Pressure and Coronary Artery Disease

Clinical Trial Registration – http://www.clinicaltrials.gov. Unique identifier: NCT00153101.

Correspondence to:
Dr. Paolo Verdecchia
Department of Medicine, Hospital of Assisi,
Via Valentin Muller 1, 06081-Assisi, Italy.
E-mail: verdec@tin.it. Phone: 075-8139336. Fax: 075-8139301
Table S1. Multivariable Cox analysis of the risk of myocardial infarction. The change in systolic blood pressure from baseline was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>(\chi^2)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Change in Systolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>-0.0039</td>
<td>0.0034</td>
<td>1.3451</td>
<td>0.2461</td>
</tr>
<tr>
<td>Spline term</td>
<td>1 year</td>
<td>1</td>
<td>2.91E-06</td>
<td>1.22E-06</td>
<td>5.7432</td>
<td>0.0166</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>1</td>
<td>0.0138</td>
<td>0.0047</td>
<td>8.5615</td>
<td>0.0034</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>-0.2331</td>
<td>0.0798</td>
<td>8.5237</td>
<td>0.0035</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>0.1200</td>
<td>0.0761</td>
<td>2.4896</td>
<td>0.1146</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.0655</td>
<td>0.0954</td>
<td>0.4718</td>
<td>0.4921</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0119</td>
<td>0.1241</td>
<td>0.0091</td>
<td>0.9238</td>
</tr>
<tr>
<td>High-risk Diabetes</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.2875</td>
<td>0.0725</td>
<td>15.7129</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4098</td>
<td>0.1006</td>
<td>16.5944</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0955</td>
<td>0.2457</td>
<td>0.1511</td>
<td>0.6975</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3941</td>
<td>0.0704</td>
<td>31.3069</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4888</td>
<td>0.0834</td>
<td>34.3220</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0391</td>
<td>0.1811</td>
<td>0.0465</td>
<td>0.8292</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0602</td>
<td>0.0764</td>
<td>0.6212</td>
<td>0.4306</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0608</td>
<td>0.0768</td>
<td>0.6273</td>
<td>0.4284</td>
</tr>
<tr>
<td>Incident cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3153</td>
<td>0.2532</td>
<td>1.5509</td>
<td>0.2130</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m^2</td>
<td>1</td>
<td>-0.0090</td>
<td>0.0018</td>
<td>25.4724</td>
<td><.0001</td>
</tr>
<tr>
<td>Baseline Systolic Blood Pressure</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0009</td>
<td>0.0021</td>
<td>0.1679</td>
<td>0.6819</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying change in Systolic BP: Wald’s \(\chi^2 \) 9.01, DF=2, p=0.011
Randomised treatment by BP interaction term p-value=0.1329
Abbreviations: BP=Blood pressure; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S2. Multivariable Cox analysis of the risk of myocardial infarction. The change in diastolic blood pressure from baseline was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Change in Diastolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>-0.0078</td>
<td>0.0054</td>
<td>2.1035</td>
<td>0.1470</td>
</tr>
<tr>
<td>Spline term</td>
<td></td>
<td>1</td>
<td>9.05E-06</td>
<td>4.71E-06</td>
<td>3.6899</td>
<td>0.0547</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0133</td>
<td>0.0047</td>
<td>8.0378</td>
<td>0.0046</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>-0.2227</td>
<td>0.0797</td>
<td>7.7991</td>
<td>0.0052</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>0.1248</td>
<td>0.0762</td>
<td>2.6860</td>
<td>0.1012</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.0581</td>
<td>0.0954</td>
<td>0.3707</td>
<td>0.5426</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0211</td>
<td>0.1242</td>
<td>0.0288</td>
<td>0.8652</td>
</tr>
<tr>
<td>History of High-risk Diabetes</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.2908</td>
<td>0.0723</td>
<td>16.1795</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4162</td>
<td>0.1006</td>
<td>17.1229</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0978</td>
<td>0.2457</td>
<td>0.1584</td>
<td>0.6906</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3913</td>
<td>0.0703</td>
<td>31.0156</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4906</td>
<td>0.0833</td>
<td>34.7127</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0270</td>
<td>0.1810</td>
<td>0.0223</td>
<td>0.8812</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0571</td>
<td>0.0764</td>
<td>0.5586</td>
<td>0.4548</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0534</td>
<td>0.0768</td>
<td>0.4838</td>
<td>0.4867</td>
</tr>
<tr>
<td>Incident cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3144</td>
<td>0.2531</td>
<td>1.5430</td>
<td>0.2142</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m2</td>
<td>1</td>
<td>-0.0090</td>
<td>0.0018</td>
<td>25.5020</td>
<td><.0001</td>
</tr>
<tr>
<td>Baseline Systolic Blood Pressure</td>
<td>1 mmHg</td>
<td>1</td>
<td>-0.0061</td>
<td>0.0035</td>
<td>3.0159</td>
<td>0.0825</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying change in Diastolic BP: Wald’s χ^2 4.24, DF=2, $p=0.1202$
Randomised treatment by BP interaction term p-value=0.0711
Abbreviations: BP=Blood pressure; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S3. Multivariable Cox analysis of the risk of stroke. The change in systolic blood pressure from baseline was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Change in Systolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0046</td>
<td>0.0041</td>
<td>1.2856</td>
<td>0.2569</td>
</tr>
<tr>
<td>Spline term</td>
<td></td>
<td>1</td>
<td>2.27E-06</td>
<td>1.43E-06</td>
<td>2.5093</td>
<td>0.1132</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0377</td>
<td>0.0055</td>
<td>46.4011</td>
<td><.0001</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>-0.0097</td>
<td>0.0899</td>
<td>0.0117</td>
<td>0.9140</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>-0.2466</td>
<td>0.0857</td>
<td>8.2862</td>
<td>0.0040</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.2352</td>
<td>0.1157</td>
<td>4.1306</td>
<td>0.0421</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.1596</td>
<td>0.1596</td>
<td>0.9999</td>
<td>0.3173</td>
</tr>
<tr>
<td>History of High-risk Diabetes</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4205</td>
<td>0.0850</td>
<td>24.4751</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>1.0496</td>
<td>0.0952</td>
<td>121.5909</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.9837</td>
<td>0.1712</td>
<td>33.0196</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.0194</td>
<td>0.0795</td>
<td>0.0597</td>
<td>0.8069</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3408</td>
<td>0.1028</td>
<td>10.9871</td>
<td>0.0009</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.7284</td>
<td>0.1535</td>
<td>22.5272</td>
<td><.0001</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0370</td>
<td>0.0931</td>
<td>0.1579</td>
<td>0.6911</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0355</td>
<td>0.0938</td>
<td>0.1434</td>
<td>0.7049</td>
</tr>
<tr>
<td>Time varying Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4061</td>
<td>0.3873</td>
<td>1.0996</td>
<td>0.2943</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.6418</td>
<td>0.2628</td>
<td>5.9615</td>
<td>0.0146</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m2</td>
<td>1</td>
<td>0.2348</td>
<td>0.3432</td>
<td>0.4680</td>
<td>0.4939</td>
</tr>
<tr>
<td>Baseline Systolic Blood Pressure</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0140</td>
<td>0.0025</td>
<td>30.2873</td>
<td><.0001</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying change in Systolic BP: Wald’s χ^2 28.56, DF=2, p<0.0001. Randomised treatment by BP interaction term p-value=0.3021

Abbreviations: BP=Blood pressure; MI=Myocardial Infarction; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S4. Multivariable Cox analysis of the risk of stroke. The change in diastolic blood pressure from baseline was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Change in Systolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0166</td>
<td>0.0068</td>
<td>6.0635</td>
<td>0.0138</td>
</tr>
<tr>
<td>Spline term</td>
<td>1 year</td>
<td>1</td>
<td>-5.16E-06</td>
<td>5.06E-06</td>
<td>1.0419</td>
<td>0.3074</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0446</td>
<td>0.0055</td>
<td>65.4869</td>
<td><.0001</td>
</tr>
<tr>
<td>Gender</td>
<td>1 unit</td>
<td>1</td>
<td>-0.2608</td>
<td>0.0857</td>
<td>9.2591</td>
<td>0.0023</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>1 unit</td>
<td>1</td>
<td>0.2322</td>
<td>0.1158</td>
<td>4.0217</td>
<td>0.0449</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>1 unit</td>
<td>1</td>
<td>0.1478</td>
<td>0.1597</td>
<td>0.8568</td>
<td>0.3546</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>1 unit</td>
<td>1</td>
<td>-0.1478</td>
<td>0.1597</td>
<td>0.8568</td>
<td>0.3546</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>1 unit</td>
<td>1</td>
<td>0.6484</td>
<td>0.2628</td>
<td>6.0858</td>
<td>0.0136</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>1 unit</td>
<td>1</td>
<td>0.6519</td>
<td>0.1533</td>
<td>18.0739</td>
<td><.0001</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0348</td>
<td>0.0931</td>
<td>0.1399</td>
<td>0.7083</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0315</td>
<td>0.0939</td>
<td>0.1128</td>
<td>0.7370</td>
</tr>
<tr>
<td>Time varying Myocardial Infarction</td>
<td>1 unit</td>
<td>1</td>
<td>0.4311</td>
<td>0.3871</td>
<td>1.2403</td>
<td>0.2654</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>1 unit</td>
<td>1</td>
<td>0.6484</td>
<td>0.2628</td>
<td>6.0858</td>
<td>0.0136</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m2</td>
<td>1</td>
<td>0.2254</td>
<td>0.3432</td>
<td>0.4315</td>
<td>0.5113</td>
</tr>
<tr>
<td>Baseline Systolic Blood Pressure</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0160</td>
<td>0.0043</td>
<td>14.2754</td>
<td>0.0002</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying change in Diastolic BP: Wald’s χ^2 53.27, DF=2, p<0.0001.
Randomised treatment by BP interaction term p-value=0.2915
Abbreviations: BP=Blood pressure; MI=Myocardial Infarction; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S5. Multivariable Cox analysis of the risk of myocardial infarction. On-treatment systolic blood pressure was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Systolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0015</td>
<td>0.0032</td>
<td>0.2159</td>
<td>0.6422</td>
</tr>
<tr>
<td>Spline term</td>
<td>1</td>
<td>1</td>
<td>7.26E-07</td>
<td>2.11E-06</td>
<td>0.1178</td>
<td>0.7314</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0140</td>
<td>0.0047</td>
<td>8.9123</td>
<td>0.0028</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>-0.2248</td>
<td>0.0796</td>
<td>7.9660</td>
<td>0.0048</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>0.1145</td>
<td>0.0760</td>
<td>2.2685</td>
<td>0.1320</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.0688</td>
<td>0.0953</td>
<td>0.5204</td>
<td>0.4707</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0086</td>
<td>0.1241</td>
<td>0.0048</td>
<td>0.9445</td>
</tr>
<tr>
<td>High-risk Diabetes</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.2893</td>
<td>0.0724</td>
<td>15.9499</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4063</td>
<td>0.1006</td>
<td>16.3236</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0957</td>
<td>0.2457</td>
<td>0.1517</td>
<td>0.6970</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3946</td>
<td>0.0702</td>
<td>31.5900</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4875</td>
<td>0.0834</td>
<td>34.1754</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0301</td>
<td>0.1809</td>
<td>0.0276</td>
<td>0.8681</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0579</td>
<td>0.0764</td>
<td>0.5748</td>
<td>0.4484</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0606</td>
<td>0.0768</td>
<td>0.6226</td>
<td>0.4301</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3197</td>
<td>0.2531</td>
<td>1.5949</td>
<td>0.2066</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m²</td>
<td>1</td>
<td>-0.0091</td>
<td>0.0018</td>
<td>25.7572</td>
<td><.0001</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying Systolic BP: Wald’s χ^2 2.32, DF=2, p=0.3141
Randomised treatment by BP interaction term p-value=0.3102
Abbreviations: BP=Blood Pressure; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S6. Multivariable Cox analysis of the risk of myocardial infarction. On-treatment diastolic blood pressure was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Diastolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>-0.0081</td>
<td>0.0041</td>
<td>4.0376</td>
<td>0.0445</td>
</tr>
<tr>
<td>Spline term</td>
<td>1 year</td>
<td>1</td>
<td>1.23E-05</td>
<td>4.56E-06</td>
<td>7.2982</td>
<td>0.0069</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td>1</td>
<td>0.0138</td>
<td>0.0047</td>
<td>8.6857</td>
<td>0.0032</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>-0.2152</td>
<td>0.0796</td>
<td>7.3072</td>
<td>0.0069</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>0.1180</td>
<td>0.0760</td>
<td>2.4076</td>
<td>0.1207</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.0607</td>
<td>0.0953</td>
<td>0.4059</td>
<td>0.5241</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0186</td>
<td>0.1242</td>
<td>0.0224</td>
<td>0.8812</td>
</tr>
<tr>
<td>High-risk Diabetes</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.2973</td>
<td>0.0722</td>
<td>16.9721</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4127</td>
<td>0.1005</td>
<td>16.8465</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0952</td>
<td>0.2457</td>
<td>0.1502</td>
<td>0.6984</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3905</td>
<td>0.0702</td>
<td>30.9858</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4945</td>
<td>0.0833</td>
<td>35.2879</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0328</td>
<td>0.1809</td>
<td>0.0328</td>
<td>0.8562</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0539</td>
<td>0.0764</td>
<td>0.4984</td>
<td>0.4802</td>
</tr>
<tr>
<td>Telmisartan+ Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0474</td>
<td>0.0767</td>
<td>0.3812</td>
<td>0.5369</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3113</td>
<td>0.2531</td>
<td>1.5123</td>
<td>0.2188</td>
</tr>
<tr>
<td>Time-varying eGFR</td>
<td>1 ml/min/1.73m2</td>
<td>1</td>
<td>-0.0090</td>
<td>0.0018</td>
<td>25.5424</td>
<td><.0001</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying Diastolic BP: Wald’s χ^2 7.96, DF=2, p=0.0187
Randomised treatment by BP interaction term p-value=0.1758
Abbreviations: BP=Blood Pressure; eGFR=Estimated glomerular filtration rate; DF=Degrees of Freedom
Table S7. Multivariable Cox analysis of the risk of stroke. On-treatment systolic blood pressure was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Systolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td>1 mmHg</td>
<td>1</td>
<td>0.0113</td>
<td>0.0043</td>
<td>6.9315</td>
<td>0.0085</td>
</tr>
<tr>
<td>Spline term</td>
<td>1 year</td>
<td>1</td>
<td>1.46E-07</td>
<td>2.50E-06</td>
<td>0.0034</td>
<td>0.9533</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0384</td>
<td>0.0055</td>
<td>48.8818</td>
<td><.0001</td>
</tr>
<tr>
<td>Gender</td>
<td>Males=0; Females=1</td>
<td>1</td>
<td>0.0008</td>
<td>0.0897</td>
<td>0.0001</td>
<td>0.9928</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td>Caucasian=1; Non Caucasian=0</td>
<td>1</td>
<td>-0.2419</td>
<td>0.0855</td>
<td>8.0019</td>
<td>0.0047</td>
</tr>
<tr>
<td>Smoking Status</td>
<td>Current smoker=1; Non smoker=0</td>
<td>1</td>
<td>0.2220</td>
<td>0.1156</td>
<td>3.6849</td>
<td>0.0549</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.1569</td>
<td>0.1596</td>
<td>0.9665</td>
<td>0.3256</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4262</td>
<td>0.0848</td>
<td>25.2463</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>1.0608</td>
<td>0.0949</td>
<td>124.8971</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.0166</td>
<td>0.0794</td>
<td>0.0436</td>
<td>0.8347</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.3581</td>
<td>0.1024</td>
<td>12.2399</td>
<td>0.0005</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.7107</td>
<td>0.1532</td>
<td>21.5277</td>
<td><.0001</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td>Telmisartan=1; Other=0</td>
<td>1</td>
<td>0.0326</td>
<td>0.0930</td>
<td>0.1227</td>
<td>0.7261</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td>Telmisartan+Ramipril=1; Other=0</td>
<td>1</td>
<td>0.0423</td>
<td>0.0936</td>
<td>0.2045</td>
<td>0.6511</td>
</tr>
<tr>
<td>Time varying Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4131</td>
<td>0.3873</td>
<td>1.1379</td>
<td>0.2861</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.6507</td>
<td>0.2628</td>
<td>6.1313</td>
<td>0.0133</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying Systolic BP: Wald’s χ^2 35.26, DF=2, p<0.0001
Randomised treatment by BP interaction term p-value=0.3432
Abbreviations: BP=Blood Pressure; MI=Myocardial Infarction; HF=Heart Failure; DF=Degrees of Freedom
Table S8. Multivariable Cox analysis of the risk of stroke. On-treatment diastolic blood pressure was modeled as a continuous time-varying covariate using a 3-knot restricted cubic spline.

<table>
<thead>
<tr>
<th>Covariable</th>
<th>Unit</th>
<th>DF</th>
<th>Parameter Estimate</th>
<th>Standard Error</th>
<th>χ^2</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Varying Diastolic BP*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Linear term</td>
<td></td>
<td>1</td>
<td>0.0242</td>
<td>0.0055</td>
<td>19.0283</td>
<td><.0001</td>
</tr>
<tr>
<td>Spline term</td>
<td>1 mmHg</td>
<td>1</td>
<td>-1.39E-05</td>
<td>5.41E-06</td>
<td>6.6078</td>
<td>0.0102</td>
</tr>
<tr>
<td>Age</td>
<td>1 year</td>
<td>1</td>
<td>0.0444</td>
<td>0.0055</td>
<td>65.7041</td>
<td><.0001</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td>1</td>
<td>0.0050</td>
<td>0.0896</td>
<td>0.0031</td>
<td>0.9557</td>
</tr>
<tr>
<td>Ethnic Group</td>
<td></td>
<td>1</td>
<td>-0.2539</td>
<td>0.0855</td>
<td>8.8309</td>
<td>0.0030</td>
</tr>
<tr>
<td>Smoking Status</td>
<td></td>
<td>1</td>
<td>0.2258</td>
<td>0.1157</td>
<td>3.8127</td>
<td>0.0509</td>
</tr>
<tr>
<td>History of Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.1467</td>
<td>0.1596</td>
<td>0.8445</td>
<td>0.3581</td>
</tr>
<tr>
<td>History of Stroke</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>1.0744</td>
<td>0.0948</td>
<td>128.4298</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Transient Ischemic Attack</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.9905</td>
<td>0.1711</td>
<td>33.5066</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>-0.0108</td>
<td>0.0793</td>
<td>0.0186</td>
<td>0.8915</td>
</tr>
<tr>
<td>History of Arterial Occlusive Disease</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4006</td>
<td>0.1021</td>
<td>15.3931</td>
<td><.0001</td>
</tr>
<tr>
<td>History of Atrial Fibrillation</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.6484</td>
<td>0.1531</td>
<td>17.9292</td>
<td><.0001</td>
</tr>
<tr>
<td>Randomized Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Telmisartan</td>
<td></td>
<td>1</td>
<td>0.0325</td>
<td>0.0930</td>
<td>0.1222</td>
<td>0.7266</td>
</tr>
<tr>
<td>Telmisartan + Ramipril</td>
<td></td>
<td>1</td>
<td>0.0407</td>
<td>0.0937</td>
<td>0.1884</td>
<td>0.6642</td>
</tr>
<tr>
<td>Time varying Myocardial Infarction</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.4350</td>
<td>0.3872</td>
<td>1.2622</td>
<td>0.2612</td>
</tr>
<tr>
<td>Time-varying Cancer</td>
<td>Yes=1; No=0</td>
<td>1</td>
<td>0.6539</td>
<td>0.2628</td>
<td>6.1899</td>
<td>0.0128</td>
</tr>
</tbody>
</table>

* Test for the regression coefficients (linear and spline) of time-varying Diastolic BP: Wald’s χ^2 46.45, DF=2, p<0.0001
Randomised treatment by BP interaction term p-value=0.2587
Abbreviations: BP=Blood Pressure; MI=Myocardial Infarction; HF=Heart Failure; DF=Degrees of Freedom
Cambios en la presión arterial sistólica con relación al infarto de miocardio y al accidente cerebrovascular en pacientes con arteriopatía coronaria

Paolo Verdecchia, Gianpaolo Reboldi, Fabio Angeli, Bruno Trimarco, Giuseppe Mancia, Janice Pogue, Peggy Gao, Peter Sleight, Koon Teo, Salim Yusuf

Resumen — Los valores de la presión arterial (PA) excesivamente altos o bajos asociados al tratamiento pueden asociarse con resultados desfavorables en pacientes con arteriopatía coronaria, el fenómeno de la curva en forma J. Los efectos del cambio de la PA basal sobre el riesgo posterior de accidente cerebrovascular (ACV) e infarto agudo de miocardio (IAM) no son conocidos. De los 25620 pacientes aleatorizados en el estudio ONTARGET (Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial), seleccionamos 19102 pacientes con arteriopatía coronaria en el periodo inicial. La PA al ingreso fue de 141/82 mm Hg, y su disminución promedio durante el seguimiento fue de 7/6 mm Hg. La PA ingresó al análisis como variable dependiente del tiempo modelada con interpolaciones segmentarias (splines) cúbicas restringidas. Después del ajuste por varios factores determinantes potenciales de causalidad inversa, un cambio en la PA de -34/-21 mm Hg (percentil 10) desde el periodo inicial se asoció con menor riesgo de ACV sin aumento significativo en el riesgo de IAM. Un aumento de la PA sistólica/diastólica de 20/10 mm Hg (percentil 90) desde el periodo inicial se asoció con mayor riesgo de ACV, mientras que el riesgo de IAM aumentó con la PA sistólica y no con la diastólica. En conclusión, en pacientes con arteriopatía coronaria e inicialmente sin insuficiencia cardíaca congestiva, una reducción de la PA desde el periodo inicial sobre el rango de PA evaluado produjo un pequeño efecto sobre el riesgo de IAM y predijo menor riesgo de ACV. Un aumento de la PA sistólica desde el periodo inicial aumentó el riesgo de ACV e IAM. Las relaciones de la PA con el riesgo fueron mucho más pronunciadas para ACV que para IAM. Una reducción de la PA inducida por tratamiento sobre el rango estudiado parece ser segura en pacientes con arteriopatía coronaria.

Palabras clave: presión arterial ■ arteriopatía coronaria ■ infarto de miocardio ■ pronóstico ■ accidente cerebrovascular

Después de las observaciones iniciales realizadas por by Anderson,1 Stewart,2 y Cruickshank et al,3 varios estudios y revisiones individuales sugirieron que en presencia de arteriopatía coronaria (AC) confirmada, niveles excesivamente bajos de presión arterial (PA) alcanzada podrían ser perjudiciales, posiblemente por precipitar isquemia miocárdica.4,5 Dos estudios recientes a gran escala informaron hallazgos similares en pacientes con diabetes mellitus.6,7 El punto de inflexión exacto de la curva en forma de J continúa indefinido, pero es relevante para el tratamiento clínico del paciente. Ha aumentado la posibilidad de que resultados adversos en pacientes con PA exce- sivamente baja puedan deberse al efecto desfavorable de afecciones concomitantes de alto riesgo asociadas con la PA baja, pero no con la reducción de la PA inducida por tratamiento.4,7-10-12 Aunque análisis estadísticos sofisticados de estudios disponibles tienden a corregir estos desequilibrios a lo largo de diferentes puntos de la curva en forma de J, es posible que los ajustes no sean adecuados para revelar, y corregir, todos los factores determinantes de la causalidad inversa.7,13

Un enfoque adicional al fenómeno de la curva en forma de J puede ser la relación entre los cambios en la PA desde el inicio y el resultado posterior. De hecho, interpretar el fenómeno de la curva en forma de J en el sentido de que una reducción excesiva de la PA debería evitarse, requeriría de un análisis de los cambios en la PA a lo largo del tiempo, además del de los niveles de PA alcanzada.13 Dicho enfoque ayudaría a aclarar si existe una relación en forma de J no solo con los niveles de la PA alcanzada sino también con los cambios en la PA a lo largo del tiempo.

Para este fin, analizamos a los pacientes con AC confirmada incluidos en el estudio ONTARGET (Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial).14 Debido a que el estudio no demostró interacción estadística entre los criterios de valoración y la asignación del tratamiento (telmisartán, ramipril o su combinación), combinamos los 3 grupos del estudio. El estu-

Ensayos clínicos

Clinical Trial Registration —URL: http://www.clinicaltrials.gov. **Identificador único:** NCT00153101. **(Hypertension. 2015; 65: 108-114. DOI: 10.1161/HYPERTENSIONAHA.114.043110.) • Suplemento de información on-line**

Palabras clave: presión arterial ■ arteriopatía coronaria ■ infarto de miocardio ■ pronóstico ■ accidente cerebrovascular

Recibido el 23 de julio de 2014; primera decisión el 20 de agosto de 2014; revisión aceptada el 4 de septiembre de 2014.

Del Department of Medicine, Hospital of Assisi, Assisi, Italia (P.V.); Department of Medicine (G.R.) and Department of Cardiology and Cardiovascular Pathophysiology (F.A.), University Hospital of Perugia, Perugia, Italia; Department of Clinical Medicine and Cardiovascular and Immunological Sciences, University ‘Federico II’, Naples, Italia (B.T.); Department of Health Sciences, University of Milano-Bicocca and IRCCS Istituto Auxologico Italiano, Milano, Italia (G.M.); Department of Clinical Epidemiology and Biostatistics and Population Health Research Institute, Hamilton Health Sciences and McMaster University, Hamilton, Ontario, Canada (J.P., P.G., K.T., S.Y.); y Department of Cardiovascular Medicine, John Radcliffe Hospital, Oxford, Reino Unido (P.S.).

Este artículo fue enviado a David Calhoun, editor invitado, para su revisión por parte de evaluadores specialistas, decisión editorial y disposición final.

El suplemento de información únicamente on-line se encuentra disponible con este artículo en http://hyper.ahajournals.org/lookup/suppl/doi:10.1161/HYPERTENSIONAHA.114.043110/-/DC1.

Dirigir la correspondencia a: Paolo Verdecchia, Department of Medicine, Hospital of Assisi, Via Valentin Muller 1, 06081-Assisi, Italy. Correo electrónico: verdec@tin.it © 2014 American Heart Association, Inc. **Hypertension está disponible en http://hyper.ahajournals.org**

DOI: 10.1161/HYPERTENSIONAHA.114.043110

Hypertension2_ABX_2015-correccion-06-03-2015.indd 43 06/03/2015 12:56:01 p.m.
El estudio ONTARGET fue un ensayo doble ciego, controlado con placebo efectuado en pacientes con alto riesgo cardiovascular sin disfunción sistólica del ventrículo izquierdo o insuficiencia cardíaca congestiva conocida al ingresar al estudio. Se han publicado el protocolo15 y los resultados principales14 del estudio. Los pacientes fueron aleatorizados a ramipril, inhibidor de la enzima convertidora de angiotensina, a telmisartán, bloqueante del receptor de angiotensina, o a su combinación. El criterio de valoración primario fue la combinación de muerte derivada de causas cardiovasculares, infarto agudo de miocardio (IAM), accidente cerebrovascular (ACV) o internación por insuficiencia cardíaca congestiva. De acuerdo con el protocolo, los datos clínicos se siguieron recopilando después de producirse un evento del criterio de valoración primario hasta que los pacientes fallecieron.16

La mediana del periodo de seguimiento fue de 56 meses. Permitimos la continuación de los tratamientos de base previos y la incorporación de fármacos antihipertensivos diferentes a los inhibidores de la enzima convertidora de angiotensina o bloqueantes del receptor de angiotensina. Las visitas de seguimiento se realizaron a las 6 semanas, a los 6 meses y luego, cada 6 meses hasta la última visita programada. Se consideraron para el análisis los valores de la PA desde el periodo inicial hasta la vista final del protocolo, o hasta la vista inmediatamente anterior a un evento. En cada visita, medimos la PA por duplicado después de 3 minutos en reposo, en posición sentada, utilizando un dispositivo automático validado17 (OMRON, modelo HEM-757).

Definimos hipertrofia ventricular izquierda de manera binaria (sí/no) por uno, o ambos, de los siguientes puntos: 1) suma de la onda R en la derivación aVL y profundidad de la onda S en la derivación V3 > 2,0 mV en mujeres y > 2,4 mV en hombres o 2) patrón de sobrecarga en > 1 de las siguientes derivaciones: I, II, aVL o V4 a V618. La tasa de filtración glomerular se calculó mediante la fórmula Modificación de la dieta en la enfermedad renal.19

Los criterios de valoración del presente estudio fueron IAM y ACV mortal más no mortal. Se han publicado los procedimientos de definición y adjudicación de los criterios de valoración.14,16 El estudio se encuentra registrado en ClinicalTrials. gov, número NCT00153101.

Resultados

De los 25620 pacientes aleatorizados, seleccionamos 19102 pacientes con antecedentes documentados de AC en la visita inicial. Los antecedentes documentados de AC incluyeron IAM previo, angina estable o inestable, cirugía de revascularización aortocoronaria o angioplastia transluminal percutánea. La Tabla muestra las características principales de la población del estudio. Durante el seguimiento, 1097 pacientes desarrollaron un IAM y 713 pacientes, un ACV. La tasa de IAM fue de 1,29 por 100 pacientes-año y la de ACV, de 0,83 por 100 pacientes-año.

El panel superior izquierdo de la Figura 1 muestra la relación entre los cambios en la PAS desde el periodo inicial hasta el seguimiento, expresados como variable dependiente del tiempo, y el riesgo de IAM, después del ajuste por factores de confusión (Tabla S1 en el Suplemento de información únicamente on-line). Cabe destacar que, aunque la PA > 160/100 mm Hg en el periodo inicial fue un criterio de exclusión en ONTARGET, algunos pacientes desarrollaron niveles más altos de PA durante el seguimiento. La forma (splines cúbicas restringidas) para las mediciones posteriores de la PA o los cambios de la PA relacionados con la medición inicial de cada paciente, hasta el evento o la limitación de las observaciones, como covariables continuas dependientes del tiempo.21,22 Una ventaja característica del método de splines cúbicas restringidas es que no se debe especificar ninguna forma funcional particular. Los términos splines cúbicas restringidas se utilizaron, para consiguiente, para caracterizar la forma funcional de la relación entre la PA y el criterio de valoración y para verificar la presunción de linealidad de la relación de modo visual y estadístico.22 Abordamos la no linealidad potencial en la relación entre las mediciones de la PA y los criterios de valoración mediante el uso de 3 núdos ubicados en los percentiles 10, 50 y 90 de las mediciones de la PA dependientes del tiempo, las que corresponden a los valores de PA sistólica (PAS) y PA diastólica (PAD) de 118/68, 140/82, 160/95 mm Hg y a los cambios en la PAS/PAD desde el periodo inicial de -34/-21, -7/-6, +20/10 mm Hg. Utilizamos una prueba de Wald para los coeficientes de regresión de las variables de PA (es decir, lineal y spline) para evaluar la hipótesis nula de que la PA no produjo ningún efecto. Aplicamos la misma prueba a los coeficientes de las variables de splines para evaluar la hipótesis nula de que el efecto de la PA sobre los criterios de valoración era lineal.21,22 Inicialmente efectuamos análisis no ajustados (no se informaron) utilizando la PA dependiente del tiempo o los cambios en la PA como variables predictivas y posteriormente, ajustadas por las siguientes variables: edad, sexo, raza, tabaquismo, diabetes mellitus, antecedentes de IAM, antecedentes de fibrilación auricular, antecedentes de accidente cerebrovascular, antecedentes de accidente isquémico transitorio, antecedentes de arteriopatía oclusiva periférica y tratamiento aleatorizado (ramipril, telmisartán y ramipril más telmisartán). Cáncer incidente e IAM incidente ingresaron a los modelos como covariables binarias dependientes del tiempo, mientras que la tasa de filtración glomerular estimada se incluyó como covariable continua dependiente del tiempo. Los modelos de cambios en la PA como variables predictivas fueron ajustados posteriormente por la PAS y la PAD en el periodo inicial para controlar la regresión a la media.
La relación entre el riesgo de ACV y la PA alcanzada (Figura 2, arriba) fue una relación lineal (y = 0,3074), con cambios estadísticamente significativos en el riesgo de ACV en relación con un aumento y una disminución en la PA desde el período inicial. En comparación con el valor de referencia (-6 mm Hg), el CR ajustado para ACV fue 1,18 (P < 0,0001) para un aumento de 10 mm Hg en la PA (percentil 90) y 1,09 (P = 0,20) para una disminución de -21 mm Hg en la PA (percentil 10).

El panel izquierdo inferior de la Figura 1 muestra la relación entre los cambios dependientes del tiempo en la PAS desde el período inicial hasta el seguimiento y el riesgo de IAM, después del ajuste por factores de confusión (Tabla S3). La forma de la relación fue lineal (x² = 2,50; P = 0,1132), con un cambio estadísticamente significativo en el riesgo de ACV en relación con un aumento y una disminución en la PA desde el período inicial. En comparación con el valor de referencia (-7 mm Hg), el CR ajustado para ACV fue 1,42 (P < 0,0001) para un aumento de 20 mm Hg en la PAS (percentil 90), y 0,84 (P = 0,0456) para una disminución de -34 mm Hg en la PAS (percentil 10) desde el período inicial. Por lo tanto, con una reducción cada vez mayor de la PAS, se registró una disminución en el riesgo de ACV, no en el de IAM.

El panel derecho inferior de la Figura 1 muestra la relación entre los cambios dependientes del tiempo en la PA desde el período inicial hasta el seguimiento y el riesgo de IAM, después del ajuste por factores de confusión (Tabla S4). La forma de la relación fue lineal (x² = 1,04; P = 0,3074), con cambios estadísticamente significativos en el riesgo de ACV en relación con un aumento y una disminución en la PA desde el período inicial. En comparación con el nudo de referencia (-6 mm Hg), el CR ajustado para ACV fue 1,18 (P < 0,0001) para un aumento de 10 mm Hg en la PAS (percentil 90) y 0,79 (P = 0,0456) para una disminución de -21 mm Hg en la PAS (percentil 10).

Efecto pronóstico de la PA alcanzada

La Figura 2 muestra las relaciones entre la PA alcanzada, ingresadada como variable dependiente del tiempo, y el riesgo de IAM (arriba) y ACV (abajo). Después del ajuste por factores de confusión (Tabla S5), la relación entre la PAS alcanzada y el riesgo de IAM no fue significativa (P = 0,3141), sin evidencia de relación no lineal (x² = 1,12; P = 0,7314). Ni los niveles de la PAS alcanzada excesivamente altos ni aquellos excesivamente bajos se asociaron con mayor o menor riesgo de IAM en comparación con los valores de referencia (CR, 0,96; P = 0,43 en 118 mm Hg y CR, 1,07, P = 0,22 en 160 mm Hg). Pero la línea para el riesgo de ACV fue mucho más pronunciada que para IAM.

Después del ajuste por factores de confusión (Tabla S6), la relación entre la PA alcanzada y el riesgo de IAM fue no lineal ($X^2 = 7,298; P = 0,0069$) con aspecto en forma de J. Sin embargo, el riesgo relativo ajustado de IAM en el percentil 90 y en el percentil 10 de los niveles observados de PAD no alcanzaron significación estadística formal (CR, 1,05; P = 0,069 en 95 mm Hg; CR, 1,08; P = 0,101 en 68 mm Hg), similar a la observado con la PAS.

La relación entre el riesgo de ACV y la PA alcanzada (Figura 2, parte inferior) fue lineal para la PAS ($x² = 0,003; P = 0,953$) y no lineal.
para la PAD debido a que el riesgo se modificó de una forma menos pronunciada con el aumento que con la disminución de la PAD ($x^2 = 6,6078; P = 0.0102$). Sin embargo, tanto los valores altos como los bajos de la PAD alcanzada se asociaron con un aumento y una disminución significativa, respectivamente, en el riesgo de ACV. Las Tablas S7 y S8 muestran los coeficientes de la relación entre la PAS y la PAD alcanzadas y el riesgo de ACV.

El tratamiento aceptorizado en el estudio ONTARGET no alcanzó significación en ninguna de las relaciones evaluadas (Tablas S1-S8). Además, ninguna de las interacciones entre el tratamiento aceptorizado y los cambios en la PA desde el período inicial, o la PA alcanzada, ofrecieron significación estadística (véase la nota al pie de las Tablas S1-S8 para los valores de P de interacción).

Debate

Abordamos por primera vez la relación entre los cambios en la PA desde el período inicial hasta el seguimiento y el criterio de valoración posterior, además del análisis de la PA alcanzada realizado en la mayoría de los estudios anteriores.24-26 Nuestro enfoque amplía nuestro conocimiento sobre cuánto debería reducirse la PA en función de varias razones. En primer lugar, analizamos la relación entre la PA y el criterio de valoración conforme a las pruebas estadísticas formales centradas específicamente en rechazar la linealidad de la relación, más allá de la inspección visual de la forma de la curva. Para este fin, utilizamos un análisis con splines cúbicas restringidas con 3 nudos ubicados en los percentiles 10, 50 y 90 de la PA dependiente del tiempo y los cambios en la PA desde el período inicial. Utilizamos 3 nudos para preservar la parsimonia del modelo y prevenir el sobreajuste.23 Los modelos excesivamente complejos pueden ser afectados por el ruido estadístico, el conocido equilibrio entre el sesgo y la varianza,27 mientras que modelos más simples pueden registrar mejor la estructura subyacente, con mayor desempeño predictivo.23 Los percentiles 10 y 90 se eligieron para evitar resultados espurios debido a las observaciones dispersas y extremas. En segundo lugar, ajustamos el efecto de varios factores determinantes potenciales de causalidad inversa, entre ellos, el tratamiento aceptorizado del estudio ONTARGET. Por último, independientemente de la linealidad de la relación entre la PA y los criterios de valoración, evaluamos formalmente la importancia del riesgo de eventos en correspondencia con los percentiles 10 y 90 de la PA alcanzada dependiente del tiempo y los cambios en la PA en comparación con el percentil 50, para aclarar el efecto, si lo hubiera, de la relación.

Efectos de los cambios en la PA en IM y ACV

En este estudio, no nos centramos en el criterio de valoración primario; en este estudio, no nos centramos en el criterio de valoración primario.
Verdecchia et al.

Presión arterial y arteriopatía coronaria 47

primario combinado de ONTARGET sino en IAM y ACV como criterios de valoración independientes. La mayoría de los estudios disponibles, 24,25,26,27 pero no todos, 28 no hallaron ningún riesgo excedente del accidente cerebrovascular con valores bajos de PA alcanzada. Por el contrario, la relación en forma de J entre la PA y el criterio de valoración se aplicó de manera tradicional a los eventos coronarios. 24,25,26,27,31 Por lo tanto, el uso del criterio de valoración primario combinado de ONTARGET podría haber atenuado o nivelado la relación entre la PA y el criterio de valoración en correspondencia con los valores altos y bajos de la PA o los cambios desde el período inicial. Las mismas consideraciones se pueden aplicar a la combinación de muerte cardiovascular y por todas las causas, la que por lo general recolecta afecciones clínicas caracterizadas por diferentes relaciones con la PA.

En el presente estudio, una reducción de la PA desde el período inicial ≈ 34–21 mm Hg se asoció con un aumento no significativo del 5% en el riesgo de IAM en comparación con los puntos de referencia sobre la curva (-7/-6 mm Hg). Consideraciones similares se aplicaron a la relación entre la PAD alcanzada y el riesgo de IAM. Por lo tanto, aunque la relación entre los cambios en la PA y el riesgo de IAM permanecieron con forma de J, consecuente con las observaciones anteriores, 24,25,26,27 el aumento del riesgo asociado con una reducción de la PA al percentil inferior de la distribución realmente fue pequeño e insignificante en términos estadísticos. De manera significativa, una reducción de la PA de tal magnitud se asoció con una notable protección contra el accidente cerebrovascular, siendo la línea de regresión para ACV mucho más pronunciada que para IAM. Estos resultados son consecuentes con un metanálisis reciente de estudios efectuados en pacientes con diabetes mellitus tipo 2: la protección contra el ACV aumentó notablemente con la magnitud de la reducción de la PA, mientras que el riesgo de IAM no mostró relación en forma de J con la reducción de la PA. 25 Para cada 5 mm Hg de reducción de la PAS, y cada 2 mm Hg de reducción de la PAD, el riesgo de IAM disminuyó solamente 2% (P = 0,79) y 1% (P = 0,83). 25 El modesto efecto protector de la reducción de la PA sobre el riesgo de IAM también emergió en el estudio UKPDS 23 (Estudio prospectivo sobre diabetes en el Reino Unido 23), donde la PAS ocupó el cuarto lugar, después del colesterol de lipoproteínas de baja densidad, el colesterol de lipoproteínas de alta densidad y la hemoglobina A1c, en un modelo de selección multivariado de las principales variables predictivas de AC. 31 Nuestros hallazgos también son consecuentes con una metanálisis reciente que demostró que el tratamiento antihipertensivo no reduce el riesgo de IAM, pero disminuye sólidamente el riesgo de ACV en pacientes con PA en el rango prehipertensivo. 24

Un hallazgo novedoso adicional de nuestro estudio fue el aumento significativo del riesgo de IAM asociado con el aumento de la PAS, pero no de la PAD, desde el período inicial hasta el seguimiento. Existe evidencia experimental de que la evolución de la ateroesclerosis coronaria se asocia con un aumento de la PA. Por ejemplo, en el contexto del ensayo CAMELOT (Comparación entre amlopidina y enalapril para limitar acontecimientos de trombosis), una mayor PAS en el seguimiento se asoció con una mayor evolución del volumen del ateroma, estimado mediante ecografía intracoronaria, mientras que los cambios en la PAD no demostraron ninguna relación con el volumen del ateroma. 35 Nuestro estudio no puede estimar el riesgo de IAM o ACV más allá del rango de PA estudiado, aunque es posible que muchos pa-

cientes hayan tenido una disminución de la PA más acumulada debido a que estaban recibiendo fármacos hipotensores al ingresar al estudio ONTARGET, y por consiguiente, su PA no tratada habría sido más alta. Aunque el efecto pronóstico de los cambios en la PA desde el período inicial se ajustó por la PA inicial, la extensión de nuestros resultados a valores excesivamente bajos o altos de PA alcanzada puede ser engañosas. Utilizamos 3 nudos, como transición entre la complejidad del modelo y la potencia, 23 ubicados en los percentiles 10, 50 y 90 de la PAS/PAD dependiente del tiempo (118/68, 140/82 y 160/95 mm Hg) y cambios en la PA desde el período inicial (-34/-21, -7/-6 y 20/10 mm Hg). En un análisis previo del estudio ONTARGET, se observó un aumento en el riesgo del IAM y mortalidad cardiovascular en correspondencia con el decil inferior de la PA alcanzada. 23 De manera similar, en un análisis post hoc del estudio INVEST (Estudio internacional sobre verapamilotrandolapril) se observó un notable aumento en el riesgo de IAM, justificando en gran parte la relación en forma de J con la PA, en los niveles de la PA del seguimiento de ≈ 110/70 mm Hg alcanzada solamente por el 1% de la población. 26 Cabe destacar que la PA inicial fue considerablemente superior en INVEST que en ONTARGET (149/86 versus 141/82 mm Hg), posiblemente porque los niveles de la PA >160/100 mm Hg al ingreso fueron los criterios de exclusión de ONTARGET. 36 Niveles más altos de la PA en el período inicial podrían haber derivado en reducciones de la PA más drásticas en INVEST que en ONTARGET, con mayor posibilidad de reducción de perfusión coronaria en pacientes con AC confirmada y mayor frecuencia de estenosis de las arterias coronarias.

En un estudio observacional a gran escala de pacientes con diabetes mellitus tipo 2 extraídos de centros de atención primaria en Suecia y con un seguimiento de 11 años, Sundström et al 8 hallaron una relación en forma de J entre la PA y una combinación de eventos cardiovasculares y muerte tanto en pacientes que recibieron tratamiento farmacológico como en los que no lo recibieron. Existen algunas diferencias notables entre el estudio de Sundström et al 8 y el presente estudio. En primer lugar, el rango de PA estudiado fue extremadamente amplio en el estudio sueco, se recomienda precaución al buscar valores extremadamente altos o bajos de PA alcanzados en el presente estudio. En segundo lugar, una proporción constante de pacientes hallados en el estudio sueco, se recomienda precaución al buscar valores extremadamente altos o bajos de la PA en pacientes con diabetes mellitus tanto tratados como no tratados, los valores extremadamente altos o bajos de PA alcanzadas predicen un desenlace peor en comparación con los valores intermedios (135-139/74-76 mm Hg para eventos cardiovasculares y muerte tanto en pacientes que recibieron tratamiento farmacológico como en los que no lo recibieron, 35 se recomienda precaución al buscar valores extremadamente altos o bajos de PA alcanzados en el presente estudio. En segundo lugar, una proporción constante de pacientes hallados en el estudio sueco, se recomienda precaución al buscar valores extremadamente altos o bajos de PA alcanzados en el presente estudio.

Limitaciones

Aunque el presente estudio se ha efectuado en una población extendida con antecedentes de AC, los detalles del análisis se han definido post hoc. En segundo lugar, una proporción constante de pacientes recibió tratamiento concomitante con estatinas, fármacos antiplaquetarios y β-bloqueantes, lo que podría haber influido en los re-

Hypertension2_ABX_2015-correccion-06-03-2015.indd 47

06/03/2015 12:56:02 p.m.
sultados, independientemente de los cambios en la PA. Por último, el efecto potencial de los factores de confusión no medidos no se puede excluir a pesar del ajuste extenso por varias covariables fijas y dependientes del tiempo.

Conclusiones

En pacientes con antecedentes de AC e inicialmente sin insuficiencia cardíaca congestiva, una reducción de la PA de -34/-21 mm Hg desde el periodo inicial, correspondiente a una PA alcanzada de 118/68 mm Hg, se asoció con una reducción consecuente en el riesgo de ACV sin ningún cambio en el riesgo de IAM. Por el contrario, se produjo un aumento del riesgo de IAM junto con un aumento de la PAS desde el periodo inicial. Nuestros datos no indican ninguna reducción adicional del riesgo de IAM con los niveles bajos de la PAS informados anteriormente, aunque el riesgo de ACV disminuyó sustancialmente. Las pautas para el tratamiento de la hipertensión arterial de la Sociedad Europea de Hipertensión/Sociedad Europea de Cardiología de 2013 para el manejo de la hipertensión arterial recomendaron reducir la PA sistólica por debajo de 140 mm Hg y la PA diastólica por debajo de 90 mm Hg, pero la potencia de la recomendación es de clase IIa y el nivel de evidencia es B.11 Los niveles de PAD 80 a 85 mm Hg se han definido como seguros y bien tolerados (clase I, nivel A) en pacientes con AC11 aunque la evidencia no parezca concluyente. Las pautas del VIII JNC recomendaron reducir la PA alta en personas de > 60 años de edad a niveles inferiores a 150/90 mm Hg a fin de disminuir el riesgo de ACV, insuficiencia cardíaca y cardiopatía coronaria.37 Una excepción la representan los pacientes de > 60 años de edad con diabetes mellitus concomitante o de > 70 años de edad con enfermedad renal crónica, en los que la PA objetivo se fijó más estrictamente en 140/90 mm Hg. El panel del VIII JNC no llegó a una unanimidad sobre dicha recomendación.37 Una minoría de los miembros sugirió mantener la PAS objetivo en < 140 mm Hg, incluso en personas de 60 a 79 años de edad.18 Su justificación fue la falta de pruebas sólidas provenientes de ensayos de intervención de que los sujetos más jóvenes y mayores de 60 años se beneficiarían con las diferentes PAS objetivo (< 140 y <150 mm Hg, respectivamente).18 El presente estudio demostró un aumento significativo en el riesgo de ACV para una PAS alcanzada de 150 mm Hg en comparación con un valor de referencia de 140 mm Hg, lo que avala, por consiguiente, una PA objetivo más estricta (140 mm Hg) para la prevención de accidentes cerebrovasculares. Los Coverts constituyen una población experimental compuesta de pacientes con alto riesgo vascular, con una edad promedio de 66 años y evidencia de AC en el periodo inicial. En particular, incluso cambios menores en la PAS desde el periodo inicial en cualquier dirección fueron predictivos de cambios significativos en el riesgo de accidente cerebrovascular.

Perspectivas

Nuestros datos sugieren que una PAS objetivo de < 140 mm Hg es apropiada para la prevención de ACV en pacientes con alto riesgo vascular con evidencia de AC previa.

Tanto las pautas de la Sociedad Europea de Hipertensión/Sociedad Europea de Cardiología como el VIII JNC recomiendan la obtención de más información en ensayos futuros para ayudar a aclarar las dudas restantes.11,37 El presente estudio, efectuado en pacientes de alto riesgo con evidencia de AC, parece alentador en cuanto a la seguridad de la reducción de la PA sobre el rango de PA estudiado, incluso para los valores de PA alcanzada < 130/80 mm Hg. Esto avala sólidamente la idea de que el riesgo de ACV, no así el de IAM, en consecuencia se reduciría con dichos niveles. Nuestros hallazgos avalan la conclusión de la declaración científica de la American Heart Association/American Stroke Association de que la disminución de la PA con fármacos antihipertensivos parece ser el factor determinante principal para la reducción del riesgo de ACV.39 Futuras pautas deberán hacer hincapié en el efecto diferente de un control más firme de la PA sobre el riesgo de ACV e IAM. El presente análisis deberá considerarse un generador de hipótesis y un estímulo adicional para los ensayos controlados aleatorizados para evaluar el efecto de las diferentes PA objetivo sobre los riesgos de ACV e IAM considerados por separado.

Fuentes de financiación

Los estudios ONTARGET (Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial) y TRANSCEND (Telmisartan Randomised Assessment of Adding an Angiotensin II Receptor Antagonist in Patients with Cardiovascular Disease) fueron financiados por Boehringer-Ingelheim.

Declaración de conflictos de interés

P. Verdecchia, P. Sleight y S. Yusuf recibieron honorarios por consultoría, conferencias y becas por investigación de parte de Boehringer-Ingelheim y de empresas elaboradoras de bloqueantes de receptores de angiotensina. K. Teo recibió honorarios por conferencias y becas por investigación de parte de Boehringer-Ingelheim durante la conducción de los estudios ONTARGET (Ongoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial) y TRANSCEND (Telmisartan Randomised Assessment of Adding an Angiotensin II Receptor Antagonist in Patients with Cardiovascular Disease). P. Verdecchia también recibió financiación de la fundación sin fines de lucro Fondazione Umbra Cuore e Ipertensione-ONLUS, Perugia, Italia. Los demás autores no presentan conflictos de interés.

Referencias

Verdecchia et al.

Presión arterial y arteriopatía coronaria

Novedad y Significado

¿Qué es nuevo?

• Abordamos por primera vez la relación entre los cambios en la presión arterial desde el periodo inicial hasta el seguimiento y el desenlace posterior en pacientes de alto riesgo vascular con arteriopatía coronaria.

• En estos pacientes, un cambio en la presión arterial hasta -34/21 mm Hg desde el periodo inicial se asocia con menor riesgo de accidente cerebrovascular sin aumento del riesgo de infarto de miocardio.

¿Qué es relevante?

• El presente estudio es alentador en cuanto a la seguridad de la reducción de la presión arterial en el rango analizado, incluso para los valores de presión arterial alcanzados <130/80 mm Hg.

Resumen

En pacientes de alto riesgo vascular con arteriopatía coronaria e inicialmente libres de insuficiencia cardiaca congestiva, una reducción de la presión arterial desde el periodo inicial sobre el rango evaluado produjo un pequeño efecto sobre el riesgo de infarto de miocardio y predijo menor riesgo de accidente cerebrovascular. Un aumento en la presión arterial sistólica desde el periodo inicial aumentó el riesgo de accidente cerebrovascular e infarto de miocardio. Una reducción de la presión arterial inducida por el tratamiento dentro del rango evaluado en el presente estudio fue segura en estos pacientes.
人群/流行病学（摘要）

晚期慢性肾脏疾病和血液透析患者的血压和全因死亡风险: 慢性肾功能不全患者的队列研究

Blood Pressure and Risk of All-Cause Mortality in Advanced Chronic Kidney Disease and Hemodialysis: The Chronic Renal Insufficiency Cohort Study

血液透析患者的研究显示，收缩压（SBP）与死亡率之间呈U型曲线关系。这些研究大部分是在透析病房完成收缩压测量，而对于尚未开始血液透析的晚期慢性肾脏病患者是否存在这种U型曲线关系并未进行评估。我们旨在确定晚期慢性肾脏病患者收缩压与死亡率的关系，并在这些患者开始血液透析治疗后再次确定这个关系。慢性肾功能不全患者队列（Chronic Renal Insufficiency Cohort participants）是对晚期慢性肾脏疾病患者，从血液透析治疗开始随访的前瞻性研究。我们对以下几种情况来研究SBP和死亡率的关系：（1）患者的估算肾小球滤过率<30 ml/min/1.73 m²（n=1705）；（2）患者开始透析治疗并在透析病房中测量收缩压（n=403）；（3）开始透析治疗并在透析病房外随访中测量收缩压的患者（n=326）。Cox模型中校正人口学、心血管危险因素以及透析参数，测试U型曲线关系的分析模型中包含一个收缩压的二次项。在晚期慢性肾脏病患者中，收缩压和死亡率之间没有任何关系（每增加10 mm Hg, HR=1.02, 95%CI: 0.98-1.07）。在开始血液透析的患者中，观察到了透析病房测量的收缩压和死亡率之间的U型曲线关系。相反，透析病房外测量的收缩压与死亡率之间则呈一个线性关系（每增加10 mm Hg, HR=1.26, 95% CI: 1.14-1.40）。结论：透析病房外的收缩压可能适合作为临床管理和干预试验的目标，为此需获得透析病房外的收缩压需要付出更多努力。
（Hypertension. 2015;65:93-100.）

临床试验（摘要）

收缩压和舒张压变化与冠心病患者心肌梗死和卒中的关系

Systolic and Diastolic Blood Pressure Changes in Relation With Myocardial Infarction and Stroke in Patients With Coronary Artery Disease

Paolo Verdecchia, Gianpaolo Reboldi, Fabio Angeli, Bruno Trimarco, Giuseppe Mancia, Janice Pogue, Peggy Gao, Peter Sleight, Koon Teo, Salim Yusuf

血压过高或过低可能与冠心病患者的不良预后有关，即J型曲线现象。但与基线比较，血压的变化对卒中和心肌梗死（MI）预后的影响尚不清楚。在替米沙坦单药及与雷米普利联合应用的全球终点试验（ONTARGET）研究中，我们在25620例随机化患者中选取19,102例基线时患冠心病的患者，其入选时血压为141 /82 mmHg，随访中血压平均降低7/6 mmHg。采用限制性三次方程，将血压作为时变变量纳入模型分析，校正几个反向因果关系的潜在决定因素后，血压较基线变化-34/-21 mm Hg（即第十个百分位），卒中风险较小，且无心肌梗死风险的显著增加。当收缩压/舒张压较基线升高20/10 mm Hg（即第九十个百分位）时，与卒中风险增加相关，但心肌梗死的风险与收缩压相关，而与舒张压不相关。综上所述，对于冠心病且初始无充血性心力衰竭的患者，血压较基线下降，在研究所及的血压范围内，对心肌梗死风险的影响较小，而预测的卒中风险较低。当收缩压较基线升高时，卒中和心肌梗死的风险均增加。而且，血压与卒中风险的关系较与心肌梗死风险的关系更密切。因此，对于冠心病患者进行降压治疗，在所研究的血压区间内降压似乎是安全的。

临床试验注册网址：http://www.clinicaltrials.gov，唯一编码：NCT00153101。
（Hypertension. 2015 - 114 65:108.）