Rapid progress in relation to cardiovascular effects of angiotensin 1 to 7 (Ang 1–7), the Mas receptor, and the angiotensin-converting enzyme type 2 (ACE2) is an example of basic biomedical research, which may eventually lead to an advance in care of patients.

When one of us (D.H.) first attended the meeting of the Council for High Blood Pressure Research about 1970, the future of studies of the renin/angiotensin system seemed limited. It looked like there was not much more to be learned and was not a promising area of research. That judgment was comparable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.
TACE? Would systemic administration of Ang 1–7 protect the brain after brain ischemia?

The future? These studies suggest that Ang 1–7/ACE2 Mas axis may protect against stroke; an enormous word of caution, however. Many studies have observed that a wide variety of interventions have failed to reduce the size of ischemic strokes in experimental models (especially in rats and mice). But these interventions have failed to reduce the size of strokes in humans. As a minimum, this area of research is clarifying mechanisms by which endogenous Ang 1–7/ACE2 protects against stroke. We are far from knowing however whether Ang 1–7 will be the first peptide to protect against stroke in humans.

Sources of Funding

This work was supported by a North Shore University Hospital–Brain Aneurysm Foundation award (R. Peña-Silva) and National Institutes of Health grant HL-062984 (D. Heistad).

Disclosures

None.

References

Figure. Brain ischemia induces neuroinflammation, apoptosis, and oxidative stress and causes brain damage. Recent studies revealed that brain ischemia may increase the circulating and local angiotensin-converting enzyme type 2 (ACE2) activity. Increased ACE2 activity may lead to increased formation of angiotensin 1 to 7 (Ang 1–7) and stimulation of Mas receptors, which may be neuroprotective. Similar effects can be obtained after local or intraperitoneal administration of an ACE2 activator (diminazene). Ang II indicates angiotensin II.
Stages in Discovery: Angiotensin-Converting Enzyme Type 2 and Stroke
Ricardo A. Peña-Silva and Donald D. Heistad

Hypertension. 2015;66:15-16; originally published online May 4, 2015; doi: 10.1161/HYPERTENSIONAHA.115.05278

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/66/1/15

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/