Rapid progress in relation to cardiovascular effects of angiotensin 1 to 7 (Ang 1–7), the Mas receptor, and the angiotensin-converting enzyme type 2 (ACE2) is an example of basic biomedical research, which may eventually lead to an advance in care of patients.

When one of us (D.H.) first attended the meeting of the Council for High Blood Pressure Research about 1970, the future of studies of the renin/angiotensin system seemed limited. It looked like there was not much more to be learned and future of studies of the renin/angiotensin system seemed limited. It looked like there was not much more to be learned and was not a promising area of research. That judgment was comparable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1 Obviously, the parable to the initial impression that Furchgott’s endothelium–derived relaxing factor was not important.1

Another chapter of the renin/angiotensin system story has been written during the past 2 decades as the ACE2/angiotensin Ang 1–7/Mas receptor axis has emerged. The first stage was the discovery of Ang 1–7 by Ferrario;2 the role of ACE2 on enzymatic formation of Ang 1–7 by Penninger;3 and identification of the Ang 1–7 receptor, Mas, by Santos and Bader.4 The second stage was the finding that administration of exogenous Ang 1–7 is sufficiently potent to produce effects on the cardiovascular system, and that the endogenous system is sufficiently potent to affect responses to several pathophysiological states.5

One of the important effects of ACE2/Ang 1–7/Mas receptor axis is its effects on the brain and cerebral blood vessels. ACE2 and Ang 1–7 are important modulators of cerebrovascular function.6,7 Treatment with Ang 1–7 seems to protect the brain from inflammation, apoptosis, and oxidative stress induced by hypertension.8 Ang 1–7 also may play an important role in cerebrovascular disease. In stroke-prone hypertensive rats and in a mouse model of rupture of intracranial aneurysms,9 Ang 1–7 seems to increase survival. The ACE2/Ang 1–7/Mas receptor axis also seems to be modulated and be beneficial in models of ischemic stroke. Levels of Ang 1–7 and expression of ACE2 and Mas increase after middle cerebral artery occlusion (MCAO) in rats.10 Several groups have shown that intracerebroventricular administration of Ang 1–7, administered before and during MCAO, may attenuate neuronal damage in rats after MCAO.10–12 Similarly, indirect approaches to increase brain Ang 1–7 levels have been developed using intracerebroventricular administration of an ACE2 activator (diminazene), which also may protect the brain against ischemic damage.13 Thus, several lines of evidence suggest that the ACE2/Ang 1–7/Mas receptor axis plays a protective role in pathophysiology of cerebrovascular disease and stroke.

In the current issue of Hypertension, Bennion et al13 extend previous studies and demonstrate that the ACE2 activator, diminazene, when given intraperitoneally, attenuates brain damage and neurological deficit after ischemic stroke. The authors used an MCAO model in which endothelin 1 is injected in the proximity of the MCA and induces vasoconstriction. Using this model, the authors report several findings. First, brain ACE2 activity increases shortly after ischemic stroke. Second, circulating ACE2 activity is also increased 3 days after ischemic stroke. Third, inhibition of cerebral ACE2 by intracerebroventricular injection of an ACE2 inhibitor (MLN-4760) did not increase infarct volume, but resulted in aggravation of neurological deficit after MCAO. Fourth, intraperitoneal injection of an ACE2 activator decreased infarct volume and neurological deficit after MCAO. Fifth, the beneficial effects of the ACE2 activator after MCAO were attenuated by intracerebroventricular injection of a Mas receptor antagonist (A779). Collectively, these results suggest that the formation of Ang 1–7 and stimulation of Mas receptors are associated with the beneficial effects of ACE2 activation in ischemic stroke (Figure). The mechanisms by which ACE2 activation protects the brain after ischemic stroke are not clear, but seem to be independent of changes in blood pressure or cerebral blood flow. Protective effects of ACE2 may involve modulation of neuroinflammation, as suggested by previous studies. Importantly, although the authors used intraperitoneal injections, they demonstrated effects of the ACE2 activator in the brain. The finding is important, with the potential for translation of these findings to the patient.

The long-term impact of interventions that target ACE2 and Ang 1–7 in stroke is not clear. Is the early decrease in neurological deficit associated with better prognosis and survival? Is circulating ACE2 activity a valid marker of brain damage after stroke? Would increased circulating ACE2 activity be associated with better prognosis or would it be associated with systemic inflammation and increased shedding of ACE2 by
TACE? Would systemic administration of Ang 1–7 protect the brain after brain ischemia?

The future? These studies suggest that Ang 1–7/ACE2 Mas axis may protect against stroke; an enormous word of caution, however. Many studies have observed that a wide variety of interventions reduce the size of ischemic strokes in experimental models (especially in rats and mice). But these interventions have failed to reduce the size of strokes in humans. As a minimum, this area of research is clarifying mechanisms by which endogenous Ang 1–7/ACE2 protects against stroke. We are far from knowing however whether Ang 1–7 will be the first peptide to protect against stroke in humans.

Sources of Funding

This work was supported by a North Shore University Hospital–Brain Aneurysm Foundation award (R. Peña-Silva) and National Institutes of Health grant HL-062984 (D. Heistad).

Disclosures

None.

References
