Progenitor Cells, Bone Marrow–Derived Fibrocytes and Endothelial-to-Mesenchymal Transition
New Players in Vascular Fibrosis

Francisco J. Rios, Adam Harvey, Rheure A. Lopes, Augusto C. Montezano, Rhian M. Touyz

Vascular fibrosis is a dynamic and active phenomenon, where a proinflammatory, oxidative milieu, triggered by prohypertensive stimuli, lays the foundation for fibrosis and activation of ECM-producing cells. Until recently the process seemed fairly simple where adventitial fibroblasts and myofibroblasts were considered the major collagen-producing cells in the vascular wall. What is becoming increasingly evident is that a whole array of cells have potential to produce ECM proteins. In fact, myofibroblasts are differentiated from various precursors including adventitial fibroblasts, pericytes, phenotypic transition of endothelial cells, phenotypic modulation of vascular smooth muscle cells, and recruitment of circulating multipotent monocytes and fibrocytes. However, the scenario continues to become more complex, Wu et al demonstrated that 3 previously unidentified cell types, including stem cell antigen-1 (Sca-1)+ progenitor cells, bone marrow–derived infiltrating fibrocytes, and cells of endothelial origin (endothelial-to-mesenchymal transition [EMT]) are major vascular-fibrosing cells in hypertension. These findings underscore the complexity of fibrogenesis and highlight the heterogeneous cell pool that contributes to ECM production, vascular fibrosis, and arterial stiffening.

Moreover, and rather intriguingly, it seems that predifferentiated resident fibroblasts represent only a minor fraction of ECM-producing cells in hypertension, with Sca-1+ cells and bone marrow–derived cells accounting for >50% of aortic collagen-producing cells and cells of endothelial origin contributing ≈25%. These findings further indicate that not only are there multiple types of ECM proteins (elastin, fibrin, and fibronectin) and collagens (I, III, and IV) contribute to fibrosis but the process is highly regulated and involves transformation, recruitment, and activation of different types of collagen-producing cells. Sca-1 is an 18-kDa mouse glycosyl phosphatidylinositol-anchored cell surface protein of the Ly6 gene family. It was originally identified as an antigen that was upregulated on activated lymphocytes, and it is commonly used as a marker of hematopoietic stem cells. Beyond the hematopoietic system, Sca-1 is expressed in a mixture of stem, progenitor, and differentiated cell types, in various tissues and organs, including the heart and vessels. Sca-1+ adventitial cells are embryonic hematopoietic cells and have the capacity to differentiate into various vascular cell types, including vascular smooth muscle cells. In the heart, resident Sca-1+ cells may play a regenerative role post myocardial infarction and in the vascular wall, resident Sca-1+ cells have been implicated in remodeling associated with arteriosclerosis. Resident vascular adventitial macrophage Sca-1+ progenitor cells are abundant in atherosclerotic lesions in hyperlipidemic apolipoprotein E(−/−) and...
Not only resident Sca-1+ progenitor cells were identified to be a significant source of collagen in vascular fibrosis but bone marrow–derived circulating fibrocytes were found to be especially important and to constitute the majority of cell types responsible for ECM production in the aorta in angiotensin II–induced hypertension. This is not a new finding because others have demonstrated that bone marrow–derived circulating progenitor cells are recruited to sites of vascular injury and to assume endothelial, smooth muscle-like and fibroblast-like phenotypes. Fibrocytes that express leukocyte antigen CD45, produce ECM components and ECM-modifying enzymes, such as matrix metalloproteinases, and can differentiate into myofibroblasts and play a role in vascular remodeling and fibrosis in pulmonary hypertension. In angiotensin II–induced hypertension, fibrocytes seem to be especially important in vascular fibrosis because Wu et al found that the majority of collagen I–producing cells of the aorta are CD45+Col I+ bone marrow–derived fibrocytes. What still needs to be identified are the specific factors involved in the recruitment and retention of these cells, although an underlying proinflammatory environment could be important because chemokines and cytokines seem to attract circulating fibrocytes to the vascular wall.

Wu et al described a third novel mechanism contributing to aortic fibrosis in angiotensin II–induced hypertension, involving EMT, a process whereby differentiated endothelial cells undergo a phenotypic conversion to matrix-producing fibroblasts and myofibroblasts. EMT is usually preceded by and closely associated with inflammation and may be an adaptive response to endothelial injury. Underlying vascular inflammation in hypertension may stimulate signaling pathways such as transforming growth factor–β/SMAD, integrin-linked kinase, and Wnt/b-catenin, which are critically involved in the process of EMT. Interestingly, many of these signaling molecules are themselves implicated in the production of ECM proteins. Hence, molecular mechanisms promoting EMT are similar to those that drive fibrosis, and as such may be putative targets of antifibrotic therapy.

Although a new paradigm in aortic fibrosis in hypertension has been defined, there are a number of questions that still need to be answered. First, do similar cellular populations participate in vascular fibrosis of small arteries, the vessels that contribute to increased resistance and blood pressure elevation? Second, do Sca-1+ cells, bone marrow–derived fibrocytes and EMT cells in the vascular wall produce different types of ECM proteins and collagens? Third, do the cell types have a distinct localization in the aorta and are they activated at different time points during fibrogenesis? Fourth, what triggers the activation of these apparently unrelated cells to become profibrogenic and finally, what are the signaling pathways and mechanisms that regulate these different cell types to produce collagen and other ECM in a regulated and organized manner in the vascular wall?

Our previous notion that adventitial resident fibroblasts are the cellular origin and backbone of vascular fibrosis clearly needs to change, and based on the findings of Wu et al. we need to now think of fibrosis as a complex multicellular phenomenon where recruitment, differentiation, and transformation of various cell types define the ECM in hypertension. Moreover, from a therapeutic viewpoint, this new paradigm highlights the potential importance to target multiple cell types and different systems in the prevention of vascular fibrosis and aortic stiffening in hypertension (Figure).

Figure. Diagram demonstrating a role for multiple cell types in vascular fibrosis in hypertension. Prohypertensive factors, such as angiotensin II (Ang II) and proinflammatory stimuli, stimulate activation of bone marrow–derived fibrocytes, Sca-1+ vascular cells, resident fibroblasts, and myofibroblasts as well as endothelial–mesenchymal transition (EMT). Inflammation in particular stimulates EMT. Activation of these cells is associated with stimulation of profibrotic-signaling pathways, leading to production of extracellular matrix (ECM) proteins, such as collagens and fibronectin. These processes lead to vascular fibrosis and arterial stiffening in hypertension. The study by Wu et al suggests that the major cell types contributing to vascular fibrosis in Ang II–induced hypertension involve bone marrow–derived fibrocytes and Sca-1+ cells. ILK indicates integrin-linked kinase; MAPK, mitogen-activated protein kinase; ROS, reactive oxygen species; and TGF-β, transforming growth factor-β.
Sources of Funding

This work from the author’s laboratory was supported by grants from the British Heart Foundation (BHF) (RG/13/7/30099). R.M. Touyz is supported through a BHF Chair (CH/12/4/29762).

Disclosures

None.

References

Progenitor Cells, Bone Marrow–Derived Fibrocytes and Endothelial-to-Mesenchymal Transition: New Players in Vascular Fibrosis
Francisco J. Rios, Adam Harvey, Rheure A. Lopes, Augusto C. Montezano and Rhian M. Touyz

Hypertension. 2016;67:272-274; originally published online December 22, 2015;
doi: 10.1161/HYPERTENSIONAHA.115.06220
Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2015 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the
World Wide Web at:
http://hyper.ahajournals.org/content/67/2/272

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/