The risk surrounding individuals with blood pressure (BP) that is difficult to control has now been characterized in many different populations in the United States. Prospective cohort studies, retrospective analyses of large clinical registries, and subgroup analyses of clinical trials have consistently identified a higher prevalence of obesity, African American race, chronic kidney disease (CKD), and diabetes mellitus among individuals with apparent treatment-resistant hypertension (ATRH). Despite subtle differences in defining ATRH between studies, individuals with difficult-to-control BP are at increased risk for cardiovascular and kidney events compared with individuals with hypertension being treated with <3 antihypertensive medications. In this issue of Hypertension, Thomas et al expand these risk associations into the CKD population by examining ATRH in the Chronic Renal Insufficiency Cohort (CRIC).

The CRIC study included an ethnically diverse group of adults from across the United States with an estimated glomerular filtration rate 20–70 mL/min per 1.73 m2. Hypertension was present in 85.7% of the cohort, highlighting the strong, interdependent relationship between kidney disease and hypertension. Adhering to the American Heart Association definition of resistant hypertension, Thomas et al reported a prevalence of ATRH of 40.4% among CRIC study participants with hypertension. Although much higher than prevalence estimates for ATRH in general hypertensive populations (12.8%–21.5%), it is no surprise that ATRH is more common in CKD populations. In a cross-sectional analysis of the Kaiser Permanente Southern California health system, CKD had the strongest association with resistant hypertension with an adjusted odds ratio of 1.84 (95% confidence interval [CI] 1.78–1.90). When evaluated, CKD is inevitably associated with resistant hypertension.

The analyses by Thomas et al are well suited to characterize the relationship between CKD and ATRH. Overall, late stages of CKD and ATRH commonly coexist. Over half of CRIC study participants with an estimated glomerular filtration rate <30 mL/min per 1.73 m2 met criteria for ATRH. In an adjusted model, every 5 mL/min per 1.73 m2 decrease in estimated glomerular filtration rate was associated with a 14% higher odds of ATRH, and a doubling of proteinuria was associated with a 28% higher odds of ATRH. Many risk factors for developing CKD and hypertension overlap and certain comorbidities like diabetes mellitus are also dependent on shared conditions like obesity or socioeconomic status. Notably, kidney function and proteinuria were independently associated with ATRH after adjusting for age, gender, race, body mass index, and diabetes mellitus.

Besides kidney function and proteinuria, the strongest risk factors associated with ATRH in the CRIC were non-Hispanic black race (adjusted odds ratio 2.18 [95% CI 1.83–2.59]) and body mass index ≥40 kg/m² (adjusted odds ratio 2.26 [95% CI 1.66–3.08]). These findings are consistent with those seen in the Reasons for Geographic And Racial Differences in Stroke (REGARDS) prospective study where African Americans were oversampled and comprised a similar proportion of the cohort (42% of REGARDS and 45% of CRIC). In REGARDS, participants with a history of stroke or transient ischemic attack, multivariable adjusted analysis revealed Black race, CKD, albuminuria, and waist circumference as the primary factors independently associated with ATRH. Although findings from observational studies are limited by design in their ability to identify causal relationships, the repeated and consistent associations between resistant hypertension and CKD, African American race, and obesity throughout United States study populations implies a shared pathophysiology.

Resistant hypertension, in general, portends worse cardiovascular and kidney disease. Compared with hypertensive individuals without ATRH, individuals with ATRH start dialysis at a rate 6x higher (hazard ratio [HR] 6.32 [95% CI 4.3–9.3]), have 24% higher risk for ischemic heart events (HR 1.24 [95% CI 1.20–1.28]), and have 46% higher risk of developing congestive heart failure (HR 1.46 [95% CI 1.40–1.52]) and with an uncontrolled BP have 36% higher risk of all-cause mortality (HR 1.36 [95% CI 1.18–1.57]). Outcome assessment comparing individuals with and without ATRH in the CRIC population reveals similar risks. After adjusting for demographics and comorbidities, individuals with ATRH are at 48% higher risk for combined cardiovascular events of myocardial infarction, stroke, peripheral arterial disease, or heart failure; 28% higher risk for halving of estimated glomerular filtration rate or end-stage kidney disease; and 24% higher risk for all-cause mortality.
When comparing risk between groups, the composition of the ATRH group may differ between studies. For example, the HR for all-cause mortality in the REGARDS cohort is 1.14 (95% CI 0.93–1.40) for individuals receiving ≥4 antihypertensive medications and who have a controlled BP when compared with individuals without ATRH, which differs from the 1.36 HR (95% CI 1.18–1.57) seen when the ATRH group is composed of individuals with an uncontrolled BP receiving ≥3 antihypertensive medications. To address any potential discrepancies, Thomas et al2 performed Cox regression modeling for 3 separate ATRH groups in a sensitivity analysis. HRs for composite cardiovascular outcomes were similar, regardless of how ATRH was defined (uncontrolled BP on ≥3 medications, uncontrolled BP on ≥3 medications, including a diuretic, or controlled BP on ≥4 medications). However, ATRH defined by an uncontrolled BP with or without a diuretic was associated with a significant increase in risk of the composite renal outcome and all-cause mortality, which was not seen in the ATRH group defined by controlled BP on ≥4 medications. Although not definitive, results from this sensitivity analysis support a potential benefit in up titrating antihypertensive medication in patients with CKD to achieve BP control.

The findings reported by Thomas et al2 fit in nicely with existing data that together identify key risk factors associated with major noncommunicable diseases in the United States. Data gathered by the Institute for Health Metrics and Evaluation show that noncommunicable diseases now dominate as the cause of years of healthy life lost, measured by disability-adjusted life years, in developed countries. Some of these can be explained by an aging population that is accumulating comorbidities. However, in the United States, age-standardized rates of CKD and diabetes mellitus are rising and can be attributed to metabolic risk factors.

Examining risk factors associated with known high risk groups like ATRH illuminates the high impact areas for risk modification. Obesity, African American race, and CKD are consistent independent predictors of ATRH. Note that the association between ATRH and diabetes mellitus is also evident but diminished by the shared comorbidities of obesity and CKD. The aim of controlling BP is to reduce the risk of cardiovascular and kidney disease. Certainly, prescribing antihypertensive regimens that are effective for each individual, evaluating for secondary causes of hypertension, identifying confounding medications, and encouraging patient adherence to their regimen are critical in achieving BP control. However, studies like the one by Thomas et al2 have identified new targets for BP management and research. The greatest impact in reducing cardiovascular and kidney disease may be through prevention of risk factor development and early identification of high-risk groups.

In an analysis of 6 healthy lifestyle factors among patients with ATRH in the REGARDS cohort, self-reported exercise ≥4 times per week and not smoking were associated with reduced cardiovascular risk (adjusted HR 0.67 [95% CI 0.50–0.91] and 0.54 [95% CI 0.41–0.72], respectively). Closely following the Dietary Approaches to Stop Hypertension diet or having a low sodium-to-potassium intake were not associated with reduced risk. However, nutritional assessment of the diet was performed on a self-administered food frequency questionnaire.

A low sodium diet has been shown to improve BP control among patients with resistant hypertension and is recommended in salt-sensitive hypertension, which is more common in both African Americans and individuals with CKD. However, effectively intervening on dietary salt intake at the individual level is challenging. A large proportion of CRIC participants reported attempts to reduce dietary sodium. The reported prevalence of sodium restriction was significantly higher among individuals with ATRH compared with those without ATRH (91.8% vs 82.7%; P<0.0001). However, no difference was seen in the 24-hour urine sodium content between the ATRH and no ATRH groups (165±77.8 mmol vs 161.7±77.6 mmol; P=0.23). Despite a high self-report of dietary sodium restriction, CRIC participants consumed an average of 1.4 g more sodium than the recommended 2.3 g/day.

In conclusion, the findings reported by Thomas et al2 advance the risk characterization associated with ATRH, and along with other observational studies, we can now say that the risk of ATRH has been observed. In addition to continued efforts in developing strategies to improve BP control, the next major step in reducing cardiovascular disease, kidney disease, and disability-adjusted life years may be risk factor prevention and targeted interventions in high risk groups like African Americans. Preventing development of obesity and CKD has the potential to improve BP control.

Sources of Funding
This work was supported by a research grant from the National Institute of Diabetes, Digestive, and Kidney Disease (K23 DK102660 to E. Judd).

Disclosures
None.

References

Downloaded from http://hyper.ahajournals.org/ by guest on August 24, 2017


Obesity, African American Race, Chronic Kidney Disease, and Resistant Hypertension: The Step Beyond Observed Risk
Eric Judd and David A. Calhoun

Hypertension. 2016;67:275-277; originally published online December 28, 2015;
doi: 10.1161/HYPERTENSIONAHA.115.06563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/67/2/275

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/