Circulating Adipokines and Vascular Function
Cross-Sectional Associations in a Community-Based Cohort

Abstract—Adipokines may be potential mediators of the association between excess adiposity and vascular dysfunction. We assessed the cross-sectional associations of circulating adipokines with vascular stiffness in a community-based cohort of younger adults. We related circulating concentrations of leptin and leptin receptor, adiponectin, retinol-binding protein 4, and fatty acid–binding protein 4 to vascular stiffness measured by arterial tonometry in 3505 Framingham Third Generation cohort participants free of cardiovascular disease (mean age 40 years, 53% women). Separate regression models estimated the relations of each adipokine to mean arterial pressure and aortic stiffness, as carotid femoral pulse wave velocity, adjusting for age, sex, smoking, heart rate, height, antihypertensive treatment, total and high-density lipoprotein cholesterol, diabetes mellitus, alcohol consumption, estimated glomerular filtration rate, glucose, and C-reactive protein. Models evaluating aortic stiffness also were adjusted for mean arterial pressure. Mean arterial pressure was positively associated with blood retinol-binding protein 4, fatty acid–binding protein 4, and leptin concentrations (all \(P\leq0.001\)) and inversely with adiponectin (\(P=0.002\)). In fully adjusted models, mean arterial pressure was positively associated with retinol-binding protein 4 and leptin receptor levels (\(P=0.002\) both). In fully adjusted models, aortic stiffness was positively associated with fatty acid–binding protein 4 concentrations (\(P=0.02\)), but inversely with leptin and leptin receptor levels (\(P\leq0.03\) both). In our large community-based sample, circulating concentrations of select adipokines were associated with vascular stiffness measures, consistent with the hypothesis that adipokines may influence vascular function and may contribute to the relation between obesity and hypertension. (Hypertension. 2016;67:294-300. DOI: 10.1161/HYPERTENSIONAHA.115.05949.)

Key Words: adipokines ■ biomarkers ■ epidemiology ■ obesity ■ vascular function

Excess adiposity is associated with an increased risk of cardiovascular disease (CVD) events. On a parallel note, aortic stiffness also has been linked to an increased risk of CVD.\(^1\)\(^-\)\(^2\) Other studies, including from our group, have underscored the association of obesity and related comorbidities, such as hypertension, dyslipidemia, and diabetes mellitus, with increased vascular stiffness in community-dwelling individuals.\(^3\)\(^-\)\(^4\) These observations raise the possibility that adiposity may increase CVD risk in part through effects on vascular stiffness. Yet, mechanisms linking adiposity to vascular function are incompletely elucidated.

Toward identifying possible mechanisms, adipose tissue is biologically active, elaborating multiple compounds (often termed as adipokines), such as leptin, leptin receptor (LEPR), adiponectin, fatty acid–binding protein 4 (A-FABP), and retinol-binding protein (RBP4). Adipokines may affect arterial structure and function by multiple mechanisms, including hyperglycemia, hyperinsulinemia, inflammation, activation of sympathetic activity, and vascular smooth muscle cell proliferation.\(^5\)\(^-\)\(^6\) The anatomic distribution of various adipose depots may also modulate the metabolic activity of adipokines.\(^7\)\(^-\)\(^8\) Previous work has suggested relations between individual adipokines and arterial stiffness.\(^9\)\(^-\)\(^11\) Prior data also indicate that adipokines may be altered in patients with hypertension.\(^12\)\(^-\)\(^15\)

We hypothesized that higher concentrations of leptin, A-FABP, and RBP4 and lower concentrations of LEPR and adiponectin would be associated with increased aortic stiffness, as reflected by carotid femoral pulse wave velocity (CFPWV), and with elevated blood pressure, as assessed by mean arterial pressure (MAP). To test this hypothesis, we related circulating concentrations of a panel of adipokines to vascular stiffness in a large community-based sample of young to middle-aged adults.

Methods
The longitudinal community-based Framingham Third Generation cohort, comprising the grandchildren of the Original Framingham...
Cohort, was recruited between 2002 and 2005 to undergo their first examination cycle. During the examination visit, a targeted physical examination that included measurement of resting blood pressure and anthropometry was performed, and a brief medical history that focused on cardiometabolic disease was obtained. Standardized questionnaires were used to assess diet, current smoking, alcohol use, and physical activity. Arterial tonometry was performed during the examination visit (see below). Laboratory evaluation of standard CVD risk factors was performed on venous blood sample obtained after an overnight fast. At the first examination cycle of this cohort, a panel of novel adipokines was measured on biosamples stored at −80°C without prior freeze thaw cycles. Of the 4095 attendees who were eligible for the present investigation, we excluded 167 for missing tonometry data, 196 for missing adipokine levels, 177 for missing covariate data, and 50 individuals with prevalent CVD, yielding a final sample of 3505 participants for the present analyses, 86% of the eligible Third Generation cohort. All attendees gave written informed consent, and the study protocol was approved by the Boston University Medical Center Institutional Review Board.

Adipokine Measurement

Commercially available kits were used to assay blood concentrations of adiponectin, leptin, LEPR, and RBP4 (R&D Systems Inc, Minneapolis, MN) and A-FABP (Biovendor Inc, Candler, NC). Mean interassay coefficients of variation for all adipokines were <10% as reported previously.17

Applanation Tonometry

After 5 minutes of rest, participants underwent applanation tonometry in a supine position.2 The timing of the cardiac cycle was determined by electrocardiography, and measurements of systolic and diastolic blood pressures were obtained on the right arm of the supine participant using a semiautomated auscultatory method (Cardiovascular Engineering, Inc, Norwood, MA). Arterial tonometry on right-sided carotid, brachial, radial, and femoral arteries was performed using a hand-held customized tonometer. Distances were measured from the suprasternal notch to each pulse measurement site using a caliper for the femoral site and a fiberglass tape measure for other sites. Arterial waveform signals were digitized (1000 Hz), transferred to the core laboratory (Cardiovascular Engineering Inc, Norwood, MA), and then analyzed blinded to all clinical data.

As previously described, the ECG-derived R wave was used as the reference point for signal averaging and timing waveforms.1 Tonometry-derived signal-averaged brachial waveform was calibrated to the brachial cuff systolic and diastolic blood pressure. The calibrated brachial artery waveform was then integrated to calculate MAP. The carotid waveform was used as a surrogate for central arterial pressure. The carotid waveform was calibrated to brachial waveform by assuming identical diastolic pressure and MAP. CFPWV was calculated by dividing the transit distance between carotid and femoral sites by the transit time difference between those sites. Carotid femoral transit distance was adjusted for parallel transmission by using the suprasternal notch as a fiducial point. CFPWV was calculated and transformed to eliminate skewness and heteroscedasticity. Inverse CFPWV was multiplied by −1000 to convert units to ms/m and restore directionality (high value corresponds to higher aortic stiffness).

Assessment of Covariates

Prevalent CVD was defined by the presence of cerebrovascular disease (stroke or transient ischemic attack), coronary heart disease (angina or acute coronary syndrome, including myocardial infarction), congestive heart failure, or intermittent claudication, as adjudicated by the Framingham end points review committee. Hypertension was defined as arm blood pressure ≥140/90 mm Hg or current use of antihypertensive medications. Diabetes mellitus was defined as fasting glucose concentration ≥126 mg/dL or the use of hypoglycemic medications. Alcohol use was self-reported and quantified in fluid ounces per month. Obesity was defined as body mass index ≥30 kg/m². Estimated glomerular filtration rate was calculated by the Chronic Kidney Disease–Epidemiology Collaboration equation.18

High-sensitivity C reactive protein was measured using the nephelometric method (Dade-Behring BN 100 nephelometer).

Statistical Analyses

The primary exposures of interest (independent variables) were circulating sex-standardized concentrations of the 5 adipokines. CFPWV, a measure of large arterial stiffness, and MAP, a measure of steady-flow arterial pressure, were the primary dependent variables (separate models for each). The cross-sectional associations of adipokines with CFPWV and MAP were examined using sex-pooled multivariable generalized linear regression models, adjusting for age, sex, heart rate, height, diabetes mellitus, lipid levels (total cholesterol and high-density lipoprotein), antihypertensive treatment, smoking status, and estimated glomerular filtration rate. CFPWV models were additionally adjusted for MAP to account for potential effects of distending pressure on aortic stiffness. In additional analyses, we also adjusted for weight or waist circumference to evaluate whether adjustment for adiposity altered any of the observed associations of adipokines with vascular measures. Finally, we added adjustment for alcohol intake, high sensitivity C-reactive protein as an index of inflammation, and fasting blood glucose as a continuous measure. Primary analyses treated adipokines as continuous variables. We also conducted analyses using sex-specific quartiles for each adipokine as predictors, with the first quartile serving as the referent and conducting a statistical test for trend across the quartiles. General estimating equations were used to account for the relatedness of individuals in the Third Generation cohort.19 Statistical significance was indicated by a 2-sided P value of <0.05. SAS 9.1 (Cary, North Carolina) was used for all analyses.

Results

The clinical and vascular stiffness characteristics of our young to middle-aged adult sample (mean age 40±9 years, range 20–72 years, 53% women) are shown in Table 1. Although age was similar for men and women, body mass index, blood pressure, total cholesterol, smoking prevalence, and waist circumference tended to be higher in men, whereas high-density lipoprotein cholesterol was higher in women. Leptin and adiponectin concentrations were substantially higher in women than in men. CFPWV and MAP were higher in men (P<0.001).

After adjustment for age, sex, antihypertensive treatment, total and high-density lipoprotein cholesterol, smoking, and diabetes mellitus, a one standard deviation higher value for leptin, RBP4, or A-FABP concentration was associated with approximately a 1 to 2 mm Hg higher MAP (P<0.0001 for all; Table 2), whereas a similar increment in adiponectin was associated with a 0.6 mm Hg lower MAP (P=0.002). MAP was higher across quartiles of RBP4, A-FABP, and leptin but was lower across quartiles of adiponectin (P for trend <0.0001 for all; Figure 1). On adjustment for weight (or alternatively waist circumference; results not shown for latter), RBP4 remained positively associated with MAP, whereas LEPR emerged as positively related to MAP (P<0.001 for both). After final adjustment, including alcohol intake, C-reactive protein, and blood glucose levels, the associations of RBP4 and LEPR were essentially unchanged.

Blood leptin and LEPR were inversely related (P=0.03 for both) to CFPWV, whereas A-FABP was positively related (P=0.008; Table 3). In comparison by quartile-based models, CFPWV decreased across LEPR quartiles but rose across RBP4 quartiles (P for trend =0.02 and 0.05, respectively; Figure 2). On additional adjustment for weight (or waist), the relations of LEPR and A-FABP with CFPWV were maintained in terms of directionality and statistical significance.
However, leptin emerged also being inversely related to CFPWV \((P=0.02;\) Table 3). These associations for FABP, LEPR, and leptin were largely unchanged by further adjustment for inflammation, alcohol consumption, and blood glucose levels.

Discussion

Principal Findings

In this comprehensive cross-sectional analysis of a large, community-based sample of young to middle-aged adults, we...
related circulating concentrations of a panel of 5 key adipokines to arterial stiffness measures. After multivariable adjustment, higher RBP4, A-FABP, leptin levels, and lower adiponectin levels were associated with higher MAP. On additional adjustment for weight, the positive association of RBP4 and MAP remained robust, and an additional new positive association of LEPR and MAP emerged with little change after additional adjustment for inflammation (C-reactive protein), alcohol use, or blood glucose concentrations. Higher A-FABP and lower LEPR were associated with higher CFPWV. These 2 relations were only modestly attenuated after adjustment for weight, and intriguingly, an inverse relation of leptin concentrations and CFPWV also emerged, with modest change after additional adjustment for alcohol intake, blood glucose, and inflammation.

The observed association patterns support the hypothesis that adipokines are associated with altered small and large artery function and also suggest that several of the observed relations of adipokines persist after accounting for weight, inflammation, alcohol use, and other confounders.

Circulating adipokines could mediate the well-described relation between obesity and increased vascular stiffness. Underscoring the relevance of vascular stiffness, meta-analysis indicates that 1 SD higher CFPWV is associated with a hazard ratio of 2.04 (1.70–2.44) for major CVD events in younger adults (<61 years of age).1,2,20 Adipokines influence glucose metabolism and insulin resistance, and these relations can vary according to fat quantity and regional location.21,22

Therefore, studying adipokines also may provide mechanistic insights into the link between glucose intolerance, insulin resistance, and arterial dysfunction.23 Adipokines can directly modulate endothelial cell and vascular smooth muscle cell activation, proliferation, and migration.24 Indeed, as noted earlier, prior work has shown that obesity is associated with endothelial dysfunction and increased vascular stiffness.21,24,25 Overall, our findings expand on prior reports of the relations between adipokines and vascular function. Prior studies relating circulating levels of adipokines and measures of vascular function have been largely focused on a single biomarker and evaluated limited measures of vascular function.

Leptin is a key long-term energy homeostasis signal.26,27 Circulating LEPR binds to leptin and reduces its bioavailability.26,28 Both markers have been linked to body mass index and fat distribution.29 In obesity, paradoxical elevation of leptin occurs because of end-organ resistance.7,26 Relevant to the present hypothesis, leptin receptors are present on vascular cells and in atherosclerotic lesions, suggesting a role for leptin in vascular physiology.24 Studies also have shown that leptin increases renal sympathetic activation, which increases arterial pressure.30 Leptin has been described in youth, young adults, and older adults to be associated with aortic stiffness.9,31 These previous investigations also demonstrate the relation between obesity and vascular stiffness is

Table 3. Associations of Each Adipokine With Transformed CFPWV (−1000/CFPWV)

<table>
<thead>
<tr>
<th>Adipokine</th>
<th>Model 1*</th>
<th>P Value</th>
<th>Model 2†</th>
<th>P Value</th>
<th>Model 3‡</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP4</td>
<td>0.58 (−0.08, 1.23)</td>
<td>0.09</td>
<td>0.60 (−0.06, 1.25)</td>
<td>0.08</td>
<td>0.58 (−0.08, 1.25)</td>
<td>0.09</td>
</tr>
<tr>
<td>A-FABP</td>
<td>1.14 (0.54, 1.73)</td>
<td>0.0002</td>
<td>0.96 (0.25, 1.67)</td>
<td>0.008</td>
<td>0.88 (0.16, 1.60)</td>
<td>0.02</td>
</tr>
<tr>
<td>Leptin</td>
<td>−0.03 (−0.70, 0.64)</td>
<td>0.93</td>
<td>−1.06 (−1.95, −0.18)</td>
<td>0.02</td>
<td>−1.22 (−2.12, −0.32)</td>
<td>0.008</td>
</tr>
<tr>
<td>LEPR</td>
<td>−0.79 (−1.35, −0.24)</td>
<td>0.005</td>
<td>−0.65 (−1.21, −0.08)</td>
<td>0.02</td>
<td>−0.65 (−1.21, −0.08)</td>
<td>0.03</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>0.22 (−0.54, 0.97)</td>
<td>0.57</td>
<td>0.38 (−0.40, 1.15)</td>
<td>0.34</td>
<td>0.47 (−0.31, 1.25)</td>
<td>0.24</td>
</tr>
</tbody>
</table>

*Beta coefficient per standard deviation (SD) of sex standardized biomarkers as in Table 1. A-FABP indicates fatty acid-binding protein 4; CFPWV, carotid femoral pulse wave velocity; LEPR, leptin receptor; and RBP4, retinol-binding protein 4.

†Model 1: adjusted for age, sex, heart rate, height, antihypertensive treatment, total and HDL cholesterol, smoking, diabetes mellitus, and mean arterial pressure.

‡Model 2: adjusted for Model 1 covariates and body weight.

§Model 3: adjusted for Model 2 covariates plus estimated glomerular filtration, alcohol, glucose, log transformed C reactive protein.
attenuated with the inclusion of leptin, suggesting that leptin may mediate the association between adiposity and vascular stiffness. Consistent with these prior studies, our investigation found that higher LEPR, which would lead to lower free leptin signaling, was associated with lower CFPWV and higher MAP. Further adjustment for weight influenced the relations observed for leptin. Paradoxically, after adjustment for weight, both higher leptin and LEPR were associated with lower CFPWV. The associations for leptin and LEPR may parallel so-called leptin resistance, where leptin levels are counterintuitively elevated in obese persons. Despite replete energy stores, altered cell-bound leptin receptor signal transduction inadequately senses energy repletion status, whereas circulating LEPR activity is largely unaffected.32,33 It is unlikely that the LEPR vascular associations are causally interrelated because the counter-regulatory response to lower CFPWV would not engender higher MAP. Although our results are generally consistent with a protective role for free leptin in promoting lower arterial stiffness and lower MAP, caution should be exercised in drawing causal inferences from our cross-sectional data.

Adiponectin exerts favorable metabolic and cardiovascular effects by promoting insulin sensitivity and fatty acid oxidation and inhibiting gluconeogenesis.17,34,35 Adiponectin increases nitric oxide availability and suppresses vascular smooth muscle cell proliferation and migration.36,37 Endothelial function is diminished in adiponectin knockout mice.5,6 Hypoadiponectinemia has been associated with impaired endothelial function in patients with hypertension and diabetes mellitus.5,38 Higher adiponectin levels were associated with lower arterial stiffness and better endothelial function in healthy and clinical samples;11 however, we were not able to detect a relation between adiponectin level and CFPWV. Data are conflicting regarding the relation between adiponectin and hypertension.12–14 In meta-analysis, circulating adiponectin concentrations seem to be lower in hypertensive persons.39 Our data are consistent with these meta-analytic findings because lower adiponectin was associated with higher MAP. Our data are also consistent with the hypothesis that adiponectin may mediate the vascular consequences of excess weight because inclusion of weight in the model attenuated the association of adiponectin with MAP.

RBP4 and A-FABP have been implicated as mediators of insulin sensitivity and lipid metabolism.40–42 Cross-sectional data from the Framingham Study demonstrated that circulating levels of RBP4 were associated with insulin resistance and elevated blood pressure but, intriguingly, were not associated with body mass index.17 Other investigators also found inconsistent relations between RBP4 and obesity,28,43,44 Despite the inconsistent relation with excess weight, small, patient-based studies support a relation between RBP4 and vascular function because higher circulating and urinary RBP4 concentrations have been associated with carotid intima media thickness and arterial stiffness.10,45,46 Our results demonstrating positive associations of RBP4 and MAP with little attenuation after weight adjustment are consistent with prior results. Blood A-FABP levels are elevated in persons with insulin resistance and hypertension but lower in treated hypertension.15,47 Therefore, our observed positive association of A-FABP with MAP (in models not adjusted for weight) and with CFPWV (models without and with adjustment for weight) are consistent with previous literature.

Our investigation has several limitations, including its cross-sectional observational study design, which precludes causal or temporal inferences. Our observations have uncertain generalizability to younger or elderly people or non-white ethnicity because of its constitution with predominantly young and middle-aged adults of European ancestry. Although we focused on 5 key adipokines, other adiposity biomarkers may mediate relations of obesity to vascular dysfunction. We used a simple measure of adiposity, body weight, rather than quantitative measures of visceral fat depots, which are known to be more strongly related to adipokine levels.37,46 Because these analyses are hypothesis-generating, we did not correct for multiple statistical testing. Nonetheless, if we use an overly conservative Bonferroni correction (P of 0.005, ie, 0.05/10 for relating 5 biomarkers to 2 primary vascular stiffness measures), several observed associations still remain statistically significant.
Perspectives
Leveraging contemporaneous tonometry and adipokine assays measured in a large well-characterized community-based sample, we observed novel relations of several circulating adipokines with vascular stiffness and MAP. The study findings are consistent with the notion that adipokines may be important mediators of the association of excess adiposity with vascular dysfunction. Additional studies are warranted to examine temporal relation between adipokines, adiposity, and vascular dysfunction.

Sources of Funding
This research is supported, in part, by National Heart, Lung and Blood Institute (NHLBI) contract N01-HC-25195 and HHSN2682015000011I (R.S. Vasan), R01-DK-080739 (R.S. Vasan) and R01-HL-107385 R01-HL-126136 (R.S. Vasan, G.F. Mitchell), and HL111335 (J.P. Zachariah).

Disclosures
Dr Mitchell is owner of Cardiovascular Engineering, Inc, a company that develops and manufactures devices to measure vascular stiffness, serves as a consultant to and receives honoraria from Novartis, Merck, and Servier, and was funded by research grants HL094898, DK082447, HL107385, and HL104184 from the National Institutes of Health. The authors report no conflicts.

Novelty and Significance

What Is New?

• In a large group of younger adults, we studied the relations between 5 blood proteins and hormones derived from fat tissue and the stiffness of large and small arteries.

What Is Relevant?

• Large and small blood vessel stiffness explains current and predicts future high blood pressure.
Circulating Adipokines and Vascular Function: Cross-Sectional Associations in a Community-Based Cohort

Hypertension. 2016;67:294-300; originally published online November 30, 2015;
doi: 10.1161/HYPERTENSIONAHA.115.05949

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/67/2/294

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/