Patterns and Correlates of Baseline Thiazide-Type Diuretic Prescription in the Systolic Blood Pressure Intervention Trial

Abstract—Thiazides and thiazide-type diuretics are recommended as first-line agents for the treatment of hypertension, but contemporary information on their use in clinical practice is lacking. We examined patterns and correlates of thiazide prescription in a cross-sectional analysis of baseline data from participants enrolled in the Systolic Blood Pressure Intervention Trial (SPRINT). We examined baseline prescription of thiazides in 7582 participants receiving at least 1 antihypertensive medication by subgroup, and used log-binomial regression to calculate adjusted prevalence ratios for thiazide prescription (versus no thiazide). Forty-three percent of all participants were prescribed a thiazide at baseline, but among participants prescribed a single agent, the proportion was only 16%. The prevalence of thiazide prescription differed significantly by demographic factors, with younger participants, women, and blacks all having higher adjusted prevalence of thiazide prescription than other corresponding subgroups. Participants in the lowest category of kidney function (estimated glomerular filtration rate <30 mL/min per 1.73 m2) were half as likely to be prescribed a thiazide as participants with preserved kidney function. In conclusion, among persons with hypertension and heightened cardiovascular risk, we found that thiazide prescription varied significantly by demographics and kidney disease status, despite limited evidence about relative differences in effectiveness. (Hypertension. 2016;67:550-555. DOI: 10.1161/HYPERTENSIONAHA.115.06851.) • Online Data Supplement

Key Words: antihypertensive agents ■ blood pressure ■ hypertension ■ risk factors ■ thiazides

An increase in thiazide prescription was observed after publication of ALLHAT and JNC 7, but the magnitude and duration of this effect was relatively modest and short lived.6,7 Moreover, reported rates of thiazide prescription remained lower than for other antihypertensive medication classes.8-10 However, even the most recent of these studies only included patients through 2010, and so may not represent the most up-to-date information on the use of thiazides in clinical practice.

We therefore sought to examine patterns and correlates of thiazide prescription in a contemporary cohort of patients with hypertension. We conducted a cross-sectional analysis of baseline data from the Systolic Blood Pressure Intervention Trial (SPRINT), a randomized clinical trial that enrolled persons with hypertension and other cardiovascular risk factors...
between November 2010 and March 2013.11 We hypothesized that a minority of the overall cohort would have evidence of thiazide prescription, and that older patients and patients with chronic kidney disease (CKD) would have lower prevalence of prescription than other subgroups.

Methods

Study Participants

SPRINT is a multicenter clinical trial sponsored by the National Institutes of Health comparing 2 strategies for control of systolic blood pressure (SBP) and effects on cardiovascular, brain, and renal outcomes.11,12 Briefly, between November 2010 and March 2013, participants with a history of hypertension (treated or untreated SBP≥130 mm Hg) and aged >75 years or ≥250 years with at least one of the following cardiovascular risk factors were enrolled: history of cardiovascular disease, Framingham risk score for 10-year cardiovascular disease event ≥215%, or CKD, defined as an estimated glomerular filtration rate (eGFR) of 20 to 59 mL/min per 1.73 m2 using the 4-variable modification of diet in renal disease equation.13 Participants with a history of stroke, diabetes mellitus, polycystic kidney disease, dementia, nonadherence, eGFR <20 mL/min per 1.73 m2, or ≥1 g of proteinuria/d (or the equivalent) were not eligible for participation. Participants were randomly assigned to a standard SBP target (<140 mm Hg) or to a lower SBP target (<120 mm Hg).

For this analysis, we restricted the cohort to participants prescribed at least 1 antihypertensive medication at baseline, before any changes in medications by the SPRINT investigators. All participants provided written informed consent for participation in the trial. The trial was approved by the Institutional Review Board at each site, and it is registered with ClinicalTrials.gov (NCT01206062).

Baseline Characteristics and Antihypertensive Medications

Trained study personnel ascertained information about participant baseline characteristics during the screening or randomization visit. Fasting blood and urine samples were collected at that time. All antihypertensive medications prescribed before the time of the screening visit (ie, baseline antihypertensive medications) were documented and classified into the following categories: thiazides (eg, hydrochlorothiazide, chlorthalidone, and metolazone), ACEIs, angiotensin II receptor blockers, β-blockers, calcium channel blockers, loop diuretics, mineralocorticoid receptor antagonists, direct renin inhibitors, α-blockers, centrally acting agents, and direct vasodilators.

Statistical Analysis

Our main outcome variable was evidence of baseline thiazide prescription. We examined thiazide prescription by subgroups based on sociodemographic variables, history of cardiovascular conditions, and kidney function, and plotted the unadjusted results. We used logistic regression to calculate prevalence ratios (95% confidence intervals) for thiazide prescription versus no thiazide prescription, and included the following variables in the model: age, sex, race, insurance status, cardiovascular comorbid conditions, eGFR, and presence of albuminuria (defined as a spot albumin/creatinine ratio ≥30 mg/g). For common outcomes, prevalence ratios are a more consistent approximation of relative risks than odds ratios derived from logistic regression.14 We defined statistical significance based on 2-sided P values <0.05. All analyses were conducted using SAS 9.4 (Cary, NC).

Results

Of the 9361 participants enrolled in SPRINT, 8426 (90% of total cohort) were taking at least 1 antihypertensive medication at baseline; 7582 had complete data needed for this analysis (90% of treated participants), forming the present cohort.

The 43% of participants prescribed a thiazide at baseline were generally younger, with a larger proportion of women, nonwhite race and uninsured status. They also had a lower prevalence of cardiovascular disease than participants not prescribed a thiazide at baseline (Table).
Large proportions of the cohort were prescribed ACEIs or angiotensin II receptor blockers (65%), β-blockers (40%) or dihydropyridine calcium channel blockers (33%) at baseline (Table S1 in the online-only Data Supplement). For the 2436 participants (32% of the cohort) prescribed a single antihypertensive agent at baseline, only 16% received a thiazide, whereas 43% received either an ACEI or an angiotensin II receptor blocker (Figure 1A). Of the 2967 participants prescribed 2 antihypertensive medications at baseline, fewer than half received a thiazide (Figure 1B). Of the 2179 participants prescribed ≥3 antihypertensive medications at baseline, 62% received a thiazide.

In unadjusted analyses, we saw a stepwise difference in the prevalence of thiazide prescription with older age, from 48% in participants aged 50 to 59 years down to 36% in participants aged ≥80 years (Figure S1). In multivariable-adjusted models, there was a 14% (confidence intervals, 5%–23%) lower adjusted prevalence of thiazide prescription among participants aged ≥80 years compared with participants aged 50 to 59 years (Figure 2). Women were more likely than men to have thiazides prescribed, and thiazide prescription also varied by race/ethnicity, with blacks having the highest and Hispanics the lowest prevalence of thiazide prescription (Figure S1; Figure 2). Although participants who lacked health insurance or drug benefits had higher unadjusted prevalence of thiazide prescription, the results were not statistically different after adjusting for other baseline variables (Figure S1; Figure 2).

Participants with a history of coronary disease, myocardial infarction, heart failure, atrial fibrillation, or cardiac arrhythmias were less likely to have thiazides prescribed at baseline than participants without these comorbid conditions in unadjusted and adjusted models (Figure S2; Figure 2). We saw a stepwise difference in the prevalence of thiazide prescription in participants with lower eGFR, from 45% in participants with preserved eGFR to 19% in participants with an eGFR <30 mL/min per 1.73 m2 (Figure S2). In adjusted models, there was a 51% (confidence intervals, 31%–65%) lower prevalence of thiazide prescription for participants with an eGFR <30 mL/min per 1.73 m2 compared with participants with an eGFR ≥60 mL/min per 1.73 m2 (Figure 2).

Discussion

We conducted a cross-sectional analysis of baseline data from SPRINT, a diverse cohort of persons with hypertension and other cardiovascular risk factors enrolled between November 2010 and March 2013. We found that 43% of the overall cohort was prescribed a thiazide at baseline, but that the prevalence of thiazide prescription was only 16% among participants treated with a single agent. Over half of patients prescribed 2 antihypertensive medications at baseline, and over one third of patients taking ≥3 agents did not receive a thiazide. Our results show that thiazide prescription continues to be suboptimal, and they are consistent with previous studies. For example, a study of managed care patients initiating antihypertensive medications in 2004 to 2005 showed that 37% of all patients had a regimen that included a thiazide, and only 21% of patients receiving a single drug used a thiazide. Similarly, only 18% of Medicare beneficiaries initiating antihypertensive medications in 2010 started treatment with a thiazide, despite recommendations published as part of broadly endorsed clinical practice guidelines.

In our study, thiazide prescription differed significantly by certain participant demographics, with participants in older age categories having a lower prevalence of thiazide prescription compared with the younger participants (50–59 years). The Hypertension in the Very Elderly Trial (HYVET), which randomized patients ≥80 years of age to receive the thiazide-type diuretic indapamide (with or without an ACEI) or placebo, showed fewer adverse events in the active treatment group. However, fears about higher risks of adverse events associated with thiazides may persist in a nontrial, clinical setting. In an observational analysis of older veterans, initiation with a thiazide was associated with a 2- to 3-fold higher risk of an adverse event, such as hypokalemia, hyponatremia, or acute kidney injury, compared with propensity score–matched
nonusers ($P<0.001$). However, caveats of that study included its atypical patient population (hypertension treated for at least 9 months with second-line agents only), and other methodological issues.17

We also found that women had a 12\% higher adjusted prevalence of thiazide prescription compared with men, a phenomenon observed in several other studies10,18–20 despite the lack of evidence to indicate differences in thiazide effectiveness by sex.21,22 Potential explanations for the difference may relate to concerns of adverse effects of thiazides on sexual function and metabolic syndrome in men. In women, thiazides may be used preferentially to treat more frequent complaints of edema. There may also be heightened concerns for osteoporosis in women, and thiazides inhibit calcium excretion, preserve bone mineral density and may lower the risk of hip fracture.23

Racial and ethnic differences in thiazide prescription were observed in our study: blacks were 17\% more likely, but Hispanics were 22\% less likely than non-Hispanic whites to receive thiazides, consistent with previous studies.8,12 Current guidelines recommend preferential prescription of thiazides (or calcium channel blockers) in blacks, based in part on results from ALLHAT, which, in a prespecified subgroup analysis, showed a larger SBP reduction and improved cardiovascular outcomes with chlorthalidone versus lisinopril24 (even in those with the metabolic syndrome).25 Reasons for the lower prevalence of thiazide prescription in Hispanics are unclear, as Hispanic ALLHAT participants had better blood pressure control than non-Hispanics prescribed chlorthalidone.26

Participants in the lowest eGFR category had an adjusted 51\% lower prevalence of thiazide prescription compared with participants without CKD. The guidelines from the National Kidney Foundation, published in 2002, recommend changing from a thiazide to a loop diuretic when the estimated GFR falls <30 mL/min per 1.73 m2 (with the exception of the thiazide metolazone),27 citing lower effectiveness of thiazides with impaired kidney function. However, recent studies provide evidence to the contrary. A study of 60 patients with CKD (mean eGFR, 38 mL/min per 1.73 m2) versus 60 non-CKD controls (mean eGFR, 76 mL/min per 1.73 m2) showed a similar decrease of ≈ 20 mmHg in SBP in both groups after 8 weeks of taking chlorthalidone in addition to other nondiuretic antihypertensive medications.28 A pilot study of 14 participants with CKD (eGFR, 20–45 mL/min per 1.73 m2) and poorly controlled hypertension showed that home SBP fell by 10, 13, and 9 mmHg after 4, 8, and 12 weeks and 24-hour SBP was reduced by 10.5 mmHg after 12 weeks of treatment with chlorthalidone added to other antihypertensive medications.29 Interestingly, albuminuria was also reduced by 40\% in that study. Larger, controlled studies are needed to confirm these findings, but they challenge the conventional wisdom that thiazides are not effective in advanced CKD. Clinical practice guidelines may need updating to incorporate newer evidence.

Although our analysis has several strengths, such as its large sample size, diverse participant population including a significant proportion of participants $>$75 years of age or with CKD, there are also several limitations that should be considered. First, we did not have information on medication prescriptions before enrollment in SPRINT. Thus, we are unable to determine whether some participants may have previously been initiated on a thiazide but then discontinued the drug because of adverse side effects, allergies, or other intolerances. Second, we relied on participant reporting to collect information about baseline medication prescriptions, and did not have more objective information (ie, pharmacy fill data and electronic health records) to verify the participants’ reports. We also could not determine whether lack of baseline thiazide prescription was because of indications for other drugs, physician preference, or participant nonadherence. Finally, results from persons recruited into a randomized clinical trial such as SPRINT may not be fully generalizable to the overall population of persons with hypertension. However, a recent study using data from the National Health and Nutrition Examination Survey found that a substantial proportion of US adults would meet SPRINT eligibility criteria.30

Perspectives

In a contemporary, diverse cohort with hypertension and other cardiovascular risk factors, we show that thiazides prescription remains suboptimal. Thiazides are prescribed less often than...
other classes of antihypertensive medications among participants on monotherapy, and thiazides were not prescribed for over half of patients on 2 antihypertensive medications and for over one third of patients on ≥3 antihypertensive medications at baseline. Moreover, thiazide prescription varied significantly by demographics and CKD status, despite limited evidence about differences in effectiveness in any particular subgroup.

At the time of SPRINT enrollment (2010–2013), JNC 7 and most other guidelines recommended thiazides as at least one of the first-line agents, suggesting that contemporary prescribing practices are not consistent with US hypertension guidelines. Our results suggest the need for focused interventions so that clinical practice patterns more closely reflect practice guidelines, which may improve global clinical outcomes.

Acknowledgments
The authors acknowledge the support from the following CTSAs funded by NCATS: CWRU: UL1 TR000439, OSU: UL1 RR025755, UPenn: UL1 RR024134 and UL1 TR000003, Boston: UL1 RR025771, Stanford: UL1 TR000093, Tufts: UL1 RR025752, UL1 RR000073 and UL1 TR001064, University of Illinois: UL1 TR000050, University of Pittsburgh: UL1 TR000055, UT Southwestern: 5U5TR000107-06, University of Utah: UL1 TR000105-05, Vanderbilt University: UL1 TR000445, George Washington University: UL1 TR000075, University of California, Davis: UL1 TR000002, University of Florida: UL1 TR000064, University of Michigan: UL1 TR000433, and Tulane University: P30 GM103337 COBRE Award NIGMS.

Sources of Funding
Dr Chang is supported by a grant from the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK): 5K23DK095914. The Systolic Blood Pressure Intervention Trial (SPRINT) is funded by the National Institutes of Health (NIH), including the National Heart, Lung, and Blood Institute, the NIDDK, the National Institute on Aging, and the National Institute of Neurological Disorders and Stroke, under Contract Numbers HHSN268200900040C, HHSN268200900046C, HHSN268200900047C, HHSN2682-00900048C, HHSN268200900049C, and Inter-Agency Agreement Number A-HL-13-002-001. It was also supported, in part, with resources and use of facilities through the Department of Veterans Affairs. The SPRINT investigators acknowledge the contribution of study medications (azilsartan and azilsartan combined with chlorthalidone) from Takeda Pharmaceuticals Inc. All components of the SPRINT study protocol were designed and implemented by the investigators. The investigative team collected, analyzed, and interpreted the data. All aspects of article writing and revision were carried out by the coauthors. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH, the US Department of Veterans Affairs, or the US Government. For a full list of contributors to SPRINT, please see the acknowledgment list in the online-only Data Supplement: ClinicalTrials.gov Identifier: NCT01206062.

Disclosures
Dr Cushman reports serving as an uncompensated consultant to Takeda Pharmaceuticals. The other authors report no conflicts.

References

Patterns and Correlates of Baseline Thiazide-Type Diuretic Prescription in the Systolic Blood Pressure Intervention Trial

for the SPRINT Study Research Group

Hypertension. 2016;67:550-555; originally published online January 25, 2016;
doi: 10.1161/HYPERTENSIONAHA.115.06851

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/67/3/550

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2016/01/25/HYPERTENSIONAHA.115.06851.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in _Hypertension_ can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to _Hypertension_ is online at:
http://hyper.ahajournals.org//subscriptions/
ONLINE SUPPLEMENT

PATTERNS AND CORRELATES OF BASELINE THIAZIDE-TYPE DIURETIC PRESCRIPTION IN THE SYSTOLIC BLOOD PRESSURE INTERVENTION TRIAL (SPRINT)

Authors & Affiliations:
Tara I. Chang, Stanford University School of Medicine
Gregory Evans, Wake Forest School of Medicine
Alfred K. Cheung, University of Utah
William C. Cushman, Memphis Veterans Affairs Medical Center
Matthew J Diamond, The Medical College of Georgia at Georgia Regents University
Jamie P. Dwyer, Vanderbilt University
Yonghong Huan, University of Pennsylvania
Dalane Kitzman, Wake Forest School of Medicine
John B. Kostis, Robert Wood Johnson Medical School
Suzanne Oparil, University of Alabama at Birmingham
Anjay Rastogi, University of California, Los Angeles
Christianne Roumie, Tennessee Valley Health Care Center & Vanderbilt University
Rukmani Sahay, Stanford University School of Medicine
Randall S. Stafford, Stanford University School of Medicine
Addison A. Taylor, Michael E. DeBakey VA Medical Center and Baylor College of Medicine
Jackson T. Wright Jr., Case Western Reserve University
Glenn M. Chertow, Stanford University School of Medicine
For the SPRINT Study Research Group

Corresponding Author:
Tara I. Chang, MD, MS
Assistant Professor of Medicine
Stanford Division of Nephrology
777 Welch Road Suite DE
Palo Alto, CA 94304
650-724-1297 (phone)
650-721-1443 (fax)
tichang@stanford.edu
Table S1. Baseline antihypertensive medication use in 7582 SPRINT participants prescribed at least 1 antihypertensive medication.

<table>
<thead>
<tr>
<th>Variable</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of antihypertensive agents</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>32.1</td>
</tr>
<tr>
<td>2</td>
<td>39.1</td>
</tr>
<tr>
<td>3+</td>
<td>28.7</td>
</tr>
<tr>
<td>Thiazide-type diuretic</td>
<td>43.2</td>
</tr>
<tr>
<td>Angiotensin converting enzyme inhibitor</td>
<td>41.0</td>
</tr>
<tr>
<td>Angiotensin II receptor blocker</td>
<td>23.6</td>
</tr>
<tr>
<td>Beta-blocker</td>
<td>39.5</td>
</tr>
<tr>
<td>Dihydropyridine calcium channel blocker</td>
<td>33.0</td>
</tr>
<tr>
<td>Non-dihydropyridine calcium channel blocker</td>
<td>6.0</td>
</tr>
<tr>
<td>Loop diuretic</td>
<td>5.0</td>
</tr>
<tr>
<td>Mineralocorticoid receptor antagonists</td>
<td>2.1</td>
</tr>
<tr>
<td>Direct renin inhibitors</td>
<td>0.4</td>
</tr>
<tr>
<td>Alpha-blocker</td>
<td>4.4</td>
</tr>
<tr>
<td>Centrally acting agent</td>
<td>2.4</td>
</tr>
<tr>
<td>Direct vasodilator</td>
<td>1.7</td>
</tr>
</tbody>
</table>
Figure S1: Prevalence of baseline thiazide prescription in 7582 SPRINT participants prescribed at least 1 antihypertensive medication at baseline, among specified subgroups based on demographics.
Figure S2: Prevalence of baseline thiazide prescription in 7582 SPRINT participants prescribed at least 1 antihypertensive medication at baseline, among specified subgroups based on comorbid conditions

Abbreviation: eGFR = estimated glomerular filtration rate, in mL/min per 1.73m²