Abstracts From the
37th Annual
Scientific Meeting of
the High Blood Pressure Research
Council of Australia

Melbourne, Australia
December 2-4, 2015
Editor: Brian J. Morris

Publication supported by
HBPRCA Oral Presentations

COULD THE PHASE OF THE MENSTRUAL CYCLE AFFECT THE RESULTS OF ADRENAL VENOUS SAMPLING AND SUBTYING OF PRIMARY ALDOSTERONISM?

Ahmed AH*, Gordon RD, Ward O, Willey MA, Simmons PS, Stowasser M

*Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane; *Sullivan & Nicolaides Pathology, Brisbane, Australia

Background: Since aldosterone and cortisol levels vary during the menstrual cycle, and are utilized in the interpretation of adrenal venous sampling (AVS) to differentiate unilateral from bilateral primary aldosteronism, outcome of AVS could possibly be influenced by the time of sample collection.

Aim: To assess the effect of the phase of the menstrual cycle on adrenal and peripheral venous aldosterone and cortisol levels and on serum female sex steroid levels during AVS.

Methods: In 23 pre-menopausal women with primary aldosteronism undergoing AVS, levels of aldosterone, cortisol, progesterone, estradiol, LH and FSH were compared, noting when:

- To investigate the effect of follicular or luteal phase. Results were compared to those in age-matched males undergoing AVS.

Results: Based on AVS results, 10 women (7 sampled during luteal phase) had unilateral over-production of aldosterone, and 13 (10 sampled during follicular phase) had bilateral over-production of aldosterone. The difference in proportions of luteal vs follicular studies that showed unilateral disease was significant (P<0.05). Simultaneously collected peripheral levels of progesterone (P<0.001), estradiol (P<0.05) and aldosterone (P<0.05) and bilateral adrenal venous levels of aldosterone (P<0.01) and cortisol (P<0.01) were higher in those sampled during the luteal phase. Importantly, luteal higher/lower side AV aldosterone/cortisol ratios were higher than follicular (P<0.05). Peripheral and adrenal venous aldosterone and cortisol levels were significantly higher than male in the luteal group, but not the follicular.

Conclusion: The phase of the menstrual cycle during which samples are collected significantly affects levels of aldosterone and cortisol used to interpret AVS. A risk of false lateralization appears to be present when AVS is performed during the luteal phase, but this requires confirmation with larger patient numbers, preferably with studies in each patient during both phases. Meanwhile, recording of the phase of the cycle during which AVS is performed should be encouraged.

DRINKING 1% SALINE CAUSES HYPERTENSION IN STRETOZOCIN-TREATED RATS VIA ACTIVATION OF MICROGLIA IN CENTRAL CARDIOVASCULAR CONTROL CENTRES

Alamadi E*, Badore E, Woodman OL, Stebbing MP

*School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia; *Department of Pathology, Tabib University, Medina, Saudi Arabia

Background: We have previously reported that streptozocin (STZ)-treated hyperglycemic rats display activation of microglia, the brain’s local inflammatory cells, within the paraventricular nucleus (PVN) and other cardiovascular centres 6–8 weeks following induction of diabetes. The microglial activation was accompanied by increased plasma osmolarity. Studies in other animal models suggest activation of microglia within the PVN can cause hypertension. By contrast, most studies on STZ diabetic rats have observed either reduced or unchanged blood pressure, but this requires confirmation with larger patient numbers, preferably with studies in each patient during both phases. Meanwhile, recording of the phase of the cycle during which AVS is performed should be encouraged.

Aim: To assess the effect of the phase of the menstrual cycle on adrenal and peripheral venous aldosterone and cortisol levels and on serum female sex steroid levels during AVS.

Methods: In 23 pre-menopausal women with primary aldosteronism undergoing AVS, levels of aldosterone, cortisol, progesterone, estradiol, LH and FSH were compared, noting when:

- To investigate the effect of follicular or luteal phase. Results were compared to those in age-matched males undergoing AVS.

Results: Based on AVS results, 10 women (7 sampled during luteal phase) had unilateral over-production of aldosterone, and 13 (10 sampled during follicular phase) had bilateral over-production of aldosterone. The difference in proportions of luteal vs follicular studies that showed unilateral disease was significant (P<0.05). Simultaneously collected peripheral levels of progesterone (P<0.001), estradiol (P<0.05) and aldosterone (P<0.05) and bilateral adrenal venous levels of aldosterone (P<0.01) and cortisol (P<0.01) were higher in those sampled during the luteal phase. Importantly, luteal higher/lower side AV aldosterone/cortisol ratios were higher than follicular (P<0.05). Peripheral and adrenal venous aldosterone and cortisol levels were significantly higher than male in the luteal group, but not the follicular.

Conclusion: The phase of the menstrual cycle during which samples are collected significantly affects levels of aldosterone and cortisol used to interpret AVS. A risk of false lateralization appears to be present when AVS is performed during the luteal phase, but this requires confirmation with larger patient numbers, preferably with studies in each patient during both phases. Meanwhile, recording of the phase of the cycle during which AVS is performed should be encouraged.

ASSESSMENT OF RELIABILITY OF HOME BLOOD PRESSURE MONITORING IN CHRONIC KIDNEY DISEASE PATIENTS

Amer Z*, Ong SLH*, Kelly JP*: Department of Renal Medicine, St George Hospital, Sydney, New South Wales, Australia; *St George and Sutherland Clinical School, University of New South Wales, Sydney, New South Wales, Australia

Background: Home blood pressure monitoring (HBPM) is a valuable component of monitoring essential hypertension. There are limited data, however, on its role in chronic kidney disease (CKD).

Aim: To assess (i) the reliability of the current HBPM protocol and (ii) to identify barriers to patient compliance in those with CKD.

Methods: 95 CKD clinic patients undertook HBPM following a predetermined HB protocol. OMRON BP monitors (BP monitor HEM 7211) were used after calibration of monitors on each patient in the clinics. Patients were asked to check BP three times, both in the morning and evening for seven days, record their measurements and then calculate BP averages. Patients were randomized into a group who were told their readings would be audited (audit aware) and a group who were not (audit unaware). Patient reported readings were compared against monitor-recorded memory and patient calculated blood pressure averages were checked for accuracy.

Results: The group comprised of 59% males and 41% females, whose ages ranged from 25 to 98 years and whose mean estimated glomerular filtration rate (eGFR) was 47.5 mL/min (range 9 to 80 mL/min). Twenty four percent of patients had eGFR ≥60 mL/min; 48% had eGFR ≥30–59 mL/min and 28% had eGFR ≥21 mL/min. At calibration in the clinic, there was no significant difference in systolic readings obtained by clinic or home monitors, the mean difference in systolic blood pressure being 3.5 mmHg lower (65% CI –0.9 to 0.4; NS) in the HBPM device group. During the week of HBPM, 86% of audit-aware patients completed 7 days of HBPM but only 48% followed the detailed protocol instructions precisely. Of audit-unaware subjects, 84% completed 7 days of HBPM, with only 25% following the protocol. The main protocol violations were failure to calculate BP averages (45%), extra readings (41%), and non-verifiable BP readings (11%). Clinic measurements suggested that 47% of the patients had controlled BP (systolic <140 mmHg), whereas HBPM suggested that 37% of the patients had controlled BP (systolic <135 mmHg; χ2=4.0; P=0.026, NS).

Conclusions: The present study indicates suboptimal compliance with the current standardized HBPM protocol in a CKD population. Impediments to compliance included the high number of readings required, transcription of readings from the HBPM to the written BP diary and the difficulty CKD patients had in the calculation of average BP. There was no significant difference in the assessment of BP control between clinic and HB readings. Further evaluation of the role of HBPM in the management of CKD is required. Modification of existing protocols to improve acquisition of an accurate HBPM record should be considered.

FACTORS ASSOCIATED WITH AWARENESS, TREATMENT AND CONTROL OF HYPERTENSION IN A RURAL SOUTH INDIAN POPULATION

Busingwe DP, Arabashii SP, Evans RG*, Srikanth VK*, Kartik K*, Kalyanam K*, Riddell MAP, Zhu Y, Suresh Q*, Thurit AD**: *Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, Victoria, Australia; *Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Melbourne, Victoria, Australia; *Rishi Valley Rural Health Centre, Rishi Valley, Andhra Pradesh, India; *School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia; *Foxley Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia

Background: Hypertension is rapidly becoming a major public health burden in rural Indian populations but awareness, treatment, and control are poor in these settings.

Aim: To identify factors associated with awareness, treatment, and control of hypertension.

Methods: Scheduling of the population, individuals with hypertension (blood pressure ≥140/90 mmHg or taking antihypertensive medications) were invited to participate in more comprehensive assessments. During these assessments BP, height, weight,
skinfold thickness, waist and hip circumference were measured and a questionnaire administered. Multivariate logistic regression was used to determine factors associated with awareness, treatment and control.

Results: We recruited 272 individuals with hypertension. Awareness (42%), treatment (32%) and control (27%) of hypertension were poor. Percent body fat (OR=1.06, 95% CI=1.01–1.11) and having had BP measured within the previous year (OR=4.69, 95% CI=2.68–8.20) were positively associated with awareness of hypertension, while living ~5 km from a health service was associated with poor awareness of hypertension (OR=0.53, 95% CI=0.30–0.93). Factors associated with treatment of hypertension were age >65 (OR=2.01, 95% CI=1.02–2.95), physical inactivity (OR=2.26, 95% CI=1.20–4.27), greater percent body fat (OR=1.07, 95% CI=1.02–1.13) and having had BP measured within the previous year (OR=5.78, 95% CI=3.01–11.10). Furthermore, having greater percent body fat was the only factor associated with better control of BP (OR=1.08, 95% CI=1.01–1.11).

Conclusion: Improved geographic access and utilization of health services is important for improving awareness and treatment of hypertension. Further research is necessary to determine drivers of control.

BLOOD PRESSURE MANAGEMENT – ISOMETRIC HANDGRIP EXERCISE REDUCES HYPERTENSION

Carlson DP, Inker JP, McFarlane JR, Dieberg G, Smart NA

University of New England, Armidale, New South Wales, Australia

Background: Hypertension is responsible for 45% of cardiovascular deaths due to heart disease and 51% due to stroke worldwide (WHO). According to the Australian Bureau of Statistics, 31.6% of the Australian population had hypertension in 2011/2012. Our recent meta-analysis indicates that isometric exercise may be an effective treatment for those unable to conduct the recommended minimum 30 minutes per day of moderate aerobic exercise. The anti-hypertensive effect threshold of isometric handgrip training has not been established. Moreover, the usual handgrip intensity of 30% maximum voluntary contraction (MVC) used in most studies is potentially challenging for some people.

Aims: To investigate the isometric handgrip intensity threshold for an anti-hypertensive effect, and the possibility of using a 5% MVC group as either a low intensity effect group or a true control working.

Methods: A randomized trial was conducted of 24 participants, aged between 30 and 70 years, diagnosed with mild or pre hypertension, men (n=9) and women (n=15), aged 51±8.2 years. Adherence to training was 100%. Groups were matched at baseline for age, gender, systolic blood pressure (SBP) and diastolic blood pressure (DBP). There were no reported changes in exercise, diet and medication throughout the study for any of the participants. Participants had a resting SBP ≥120 mmHg and/or a resting DBP ≥80 mmHg, or were receiving anti-hypertensive medication. Participants completed 4 sets of 2-minute isometric handgrip contractions separated by 3-minute rest periods. During one weekly training session resting and handgrip blood pressure was continuously recorded so that fluctuations of simple measurements could be avoided. Data were analyzed using paired t-tests and two-way ANOVA in R (version 3.1.3).

Results: In the 30% MVC group, a significant reduction in SBP of −10 mmHg, from 133.6±4 to 123.1±12.3 mmHg (P<0.007), was seen, while in the 5% MVC group a reduction of −5 mmHg, from 125±11.7 to 120±15.1 mmHg (P=0.033), was noted. Reductions in DBP in the 30% and 5% MVC groups were −4 mmHg, from 75±5.1 to 71±7.6 mmHg (P=0.07), and −6 mmHg, from 74±8.6 to 68±9.1 mmHg (P=0.05), respectively.

Conclusions: The significant reduction in SBP in the 30% group and DBP in the 5% MVC group confirms previous findings. While reductions in SBP in the 5% group and DBP in the 30% group were not significant, they both indicated trends towards blood pressure reduction, particularly for the latter group. Our results suggest that 5% may be a suitably intra-individual intensity to achieve anti-hypertensive effects in people unable to begin a great intensity to achieve anti-hypertensive effects in people unable to begin an adequate introductory intensity to achieve anti-hypertensive effects in people unable to begin an adequate introductory.

ROLE OF INFLAMMATION, VASOCONSTRICTION AND OXIDATIVE STRESS IN THE ENHANCED PRESSOR RESPONSE TO ANGIOTENSIN II IN AGED MICE

Dink GR, Drummond GR, Kempo-Harper BK, Diep H, Robertson AAP, Cooper MA, Soby GD, Chrisobolis SM

Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, Victoria, Australia; The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Current affiliation: College of Pharmacy, Ohio Northern University, Ohio, USA

Background: The prevalence of hypertension increases with age. Chronic low-grade inflammation commonly occurs with aging, and inflammasomes are important initiators of inflammatory responses. We tested whether aged mice exhibit an enhanced pressor response to angiotensin II (Ang II) and whether this is associated with inflammation, enhanced vasoconstriction and vascular oxidative stress. We also tested the effect of MCC950, a NLRP3 inflammasome inhibitor, on blood pressure (BP) in Ang II-treated aged mice.

Methods: Young (8–12 week old) and aged (24–30 month old) male C57BL/6 mice were left untreated, or treated with either vehicle or a “slow-pressor” dose of Ang II (0.28 mg/kg) for 28 days. Another group of aged mice were treated with either Ang II + saline or Ang II + MCC950 (10 mg/kg) for 10 days. We measured systolic BP; mRNA expression of inflammatory markers and components of the renin-angiotensin system, vascular contractile responses and superoxide levels.

Results: In young mice, Ang II caused a gradual increase in BP from 108±5 to 142±8 mmHg; n=8, whereas the effect was much greater in aged mice (from 112±4 to 155±12 mmHg; n=8, P<0.05). Aging alone increased renal expression of AT1 receptors, NLRP3, caspase-1, IL-1β, IL-33, CCN2, COL7 and CCL5 by >1.5-fold (n=7–8, all P<0.05). Maximum contractile responses to Ang II in mesenteric arteries were selectively enhanced (by 1.8-fold) in aged vs. young mice (n=4, P<0.05). In aged mice, contractile responses to Ang II were not affected by acute pre-treatment with the nitric oxide synthase inhibitor L-NNAME (100 µmol/L; n=4) or the cyclooxygenase inhibitor indomethacin (3 µmol/L, n=3), but were reduced by the superoxide scavenger tempol by 1.3-fold (100 µmol/L; n=3, P<0.05). Aged mice exhibited increased Nox2-dependent superoxide production in mesenteric arteries (by 2.4-fold) and thoracic aortas by 2-fold compared to young mice (n=8–10, both P<0.05). Ang II-induced BP was unaffected by MCC950 vs. vehicle in aged mice (BP: 193±7 vs. 145±10 mmHg; n=7–8, P<0.05).

Conclusions: Aged mice have enhanced pressor responses to Ang II, in association with augmented inflammation, vasoconstriction and vascular oxidative stress. NLRP3 inflammasome activation does not appear to contribute to Ang II-induced hypertension in aged mice.

HUMAN AMNION EPITHELIAL CELLS REDUCE INFARCT VOLUME, SPLLENIC ATROPHY AND LUNG INFLAMMATION FOLLOWING ICHISEMIC STROKE IN MICE.

Evans MV, Gardiner-Mann GV, Chan CT, Chu HV, Lim R, Wallace EM, Drummond GR, Soby GD, Broughton BRS

Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology Clayton, Victoria, Australia; The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia

Background: The outcome following ischemic stroke is influenced by the extent of brain injury and also the occurrence of bacterial infections within the lung. These infections are promoted by post-stroke immunosuppression, a phenomenon characterized by a marked loss of circulating and splenic leukocytes. Stem cells offer great therapeutic potential for stroke patients and may improve stroke outcome via multiple mechanisms. Human amnion...
epithelial cells (hAECs), which are a placenta-derived stem cell, may exhibit both immuno- modulatory and reparative effects.

Aim: To examine the effect of hAECs on brain injury and systemic immunosuppression following ischemic stroke.

Methods: Ischemic stroke was induced by 1 h middle cerebral artery occlusion-reperfusion in male C57BL/6J mice aged 7–12 weeks (n=79). Mice were injected with 1×107 hAECs or saline (vehicle) i.v. at 0.5 h after reperfusion. Sham operated mice served as controls (n=26). A parallel rod test assessed motor function and coordination after 24 h and 72 h, after which cerebral infarct volume, splenic atrophy, and lung inflammation were assessed. Splenic leukocytes were quantified using flow cytometry. Apoptotic splenocytes were quantified by immunohistochemistry.

Results: Administration of hAECs reduced infarct volume by ~50% at 24 and 72 hours after stroke (P<0.05). Reductions in infarct volume by hAECs were associated with improved motor coordination (P<0.05, measured by parallel rod test) and 50% less mortality at 72 h. Treatment with hAECs completely prevented a 3-fold increase in apoptotic cleaved caspase-3-positive splenocytes at 24 h and blunted the stroke-induced reduction in spleen weight at 72 h. Furthermore, treatment with hAECs prevented the loss of splenic leukocytes (monocytes, T cells, and particularly B cells) at 72 h. Finally, histological examination indicated markedly less lung inflammation at 72 h in mice treated with hAECs compared to vehicle (P<0.05).

Conclusions: The present data indicate that hAEC treatment improves outcome following ischemic stroke by limiting both brain injury and stroke-induced systemic immunosuppression. Thus, hAECs may be a viable therapy for neuroprotection and for promoting recovery of the immune system following ischemic stroke.

RESISTIN ENHANCES THE CENTRAL EFFECTS OF LEPTIN ON RENAL SYMPATHETIC NERVE ACTIVITY

Habeeballah H, Alfsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E
School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia

Background: Leptin is a well known hormone released from fat tissue and acts centrally to influence metabolic and cardiovascular functions. It increases renal sympathetic nerve activity (RSNA) and could be an important contributor to the abnormally elevated RSNA observed in obesity or overweight conditions. Resistin is also a hormone released from fat tissue and particularly B cells at 72 h. Finally, histological examination indicated markedly less lung inflammation at 72 h in mice treated with hAECs compared to vehicle (P<0.05).

Aim: To determine the effect on distribution of Fos in autonomic brain nuclei.

Methods: Restraint stress was applied to rats and the brain was removed and fixed, and then processed for Fos immunohistochemistry. The hypothalamus, periaqueductal gray matter, and brainstem were dissected and were processed for Fos immunohistochemistry.

Results: Administration of hAECs reduced infarct volume by ~50% at 24 and 72 hours after stroke (P<0.05). Reductions in infarct volume by hAECs were associated with improved motor coordination (P<0.05, measured by parallel rod test) and 50% less mortality at 72 h. Treatment with hAECs completely prevented a 3-fold increase in apoptotic cleaved caspase-3-positive splenocytes at 24 h and blunted the stroke-induced reduction in spleen weight at 72 h. Furthermore, treatment with hAECs prevented the loss of splenic leukocytes (monocytes, T cells, and particularly B cells) at 72 h. Finally, histological examination indicated markedly less lung inflammation at 72 h in mice treated with hAECs compared to vehicle (P<0.05).

Conclusions: The present data indicate that hAEC treatment improves outcome following ischemic stroke by limiting both brain injury and stroke-induced systemic immunosuppression. Thus, hAECs may be a viable therapy for neuroprotection and for promoting recovery of the immune system following ischemic stroke.

RESISTIN ENHANCES THE CENTRAL EFFECTS OF LEPTIN ON RENAL SYMPATHETIC NERVE ACTIVITY

Habeeballah H, Alfsuhaymi N, Stebbing MJ, Jenkins TA, Badoer E
School of Medical Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Victoria, Australia

Background: Leptin is a well known hormone released from fat tissue and acts centrally to influence metabolic and cardiovascular functions. It increases renal sympathetic nerve activity (RSNA) and could be an important contributor to the abnormally elevated RSNA observed in obesity or overweight conditions. Resistin is also a hormone released from fat tissue and particularly B cells at 72 h. Finally, histological examination indicated markedly less lung inflammation at 72 h in mice treated with hAECs compared to vehicle (P<0.05).

Aim: To determine the effect on distribution of Fos in autonomic brain nuclei.

Methods: Restraint stress was applied to rats and the brain was removed and fixed, and then processed for Fos immunohistochemistry. The hypothalamus, periaqueductal gray matter, and brainstem were dissected and were processed for Fos immunohistochemistry.

Results: Administration of hAECs reduced infarct volume by ~50% at 24 and 72 hours after stroke (P<0.05). Reductions in infarct volume by hAECs were associated with improved motor coordination (P<0.05, measured by parallel rod test) and 50% less mortality at 72 h. Treatment with hAECs completely prevented a 3-fold increase in apoptotic cleaved caspase-3-positive splenocytes at 24 h and blunted the stroke-induced reduction in spleen weight at 72 h. Furthermore, treatment with hAECs prevented the loss of splenic leukocytes (monocytes, T cells, and particularly B cells) at 72 h. Finally, histological examination indicated markedly less lung inflammation at 72 h in mice treated with hAECs compared to vehicle (P<0.05).

Conclusions: The present data indicate that hAEC treatment improves outcome following ischemic stroke by limiting both brain injury and stroke-induced systemic immunosuppression. Thus, hAECs may be a viable therapy for neuroprotection and for promoting recovery of the immune system following ischemic stroke.
disease modelling and drug discovery and testing to improve treatment options. One of the major limitations for the use of cardiomyocytes derived from iPSCs is that they resemble fetal cardiomyocytes and are immature. Considering that the developing heart grows in an electric field, we considered that electrical stimulation (ESI) might affect cardiogenesis of human iPSCs.

Aim: To investigate whether ESI promotes cardiac differentiation and maturation of cardiomyocytes derived from human iPSCs.

Methods and Results: Acute ESI (alternating current, charge-balanced biphasic pulse, 1 ms pulse width, 1 Hz frequency) at 200 mV/mm for 5 min increased the percentage of beating embryoid bodies (EBs, 11.2±2% vs. 4.2±2% in control, non-stimulated (P=0.05; n=11–15) and gene expression of cardiac-specific contractile muscle markers α-TCTN2, THNN2, MYH7, and MYL7 (n=7). Beating EBs displayed cyclic changes in intracellular calcium ion and chronotropic responsiveness to isoprenaline and carbamylcholine. Chronic ESI at 200 mV/mm for 7 days significantly increased the percentage of cardiomyocytes with organized sarcomeres (39.8±8% vs. 23.1±11%; P=0.05; n=3), aligned in parallel with the electric field (10.1±1% vs. 6.2±2%; P=0.05; n=3) and decreased the circularity index (0.69±0.02 vs. 0.74±0.02; P=0.05; n=3) indicating a more rod-like structure. The effects of longer stimulation periods are currently being evaluated. In addition, using a biologic approach, ESI is now being applied locally to cardiomyocytes derived from iPSCs in an in vivo system in rat tissue engineering chambers.

Conclusion: Brief ESI modestly enhanced cardiac differentiation of human iPSCs. Chronic ESI might promote further maturation of cardiomyocytes derived from human iPSCs. Mature cardiomyocytes can recapitalize better the pathophysiological conditions of human heart for more accurate disease modelling and drug testing, as well as providing a substrate for neonatal and adult cardiac regeneration and repair by tissue engineering in the future.

CAN TREATMENT OF YOUNG GENETICALLY HYPERTENSIVE MICE WITH ALLOPREGNANOLONE AMELIORATE THE DEVELOPMENT OF HYPERTENSION?

*Baker IDI Heart and Diabetes Institute, Prahran, Victoria, Australia; **Department of Pharmacology and Department of Physiology, Monash University, Clayton, Victoria, Australia

Background: In humans, stress-related hypertension is associated with an early predisposition to augmented cardiovascular response to stress. This may result from reduced GABAergic inhibition of specific forebrain nuclei that are responsible for initiating and maintaining the presser response to stress. Allopregnanolone (alloP) is a positive allosteric modulator of the GABA receptor. We have shown that this can reduce blood pressure (BP) in adult genetically hypertensive (BPH/2J) mice.

Aim: To determine whether treatment of young BPH/2J mice with alloP can suppress the development of hypertension.

Methods: Six-week old BPH/2J (n=19) and normotensive BPN/3J (n=15) mice were treated with a subcutaneously implanted pellet that continuously infused alloP (5-7mg/kg/day) or its vehicle for eight weeks. Treatment with alloP was then either continued or ceased for two further weeks. After both eight and ten weeks of treatment, BP over 24 hours and cardiovascular responses to stress were measured via radio-telemetry. Levels of neuronal activity were examined using Fox immunohistochemistry.

Results: BPH/2J mice treated with alloP had lower BP than vehicle treated mice (–8.8±0.3 mmHg, P=0.02) which ameliorated 36% of their hypertension (P<0.02). The pressor response to dietary cage-switch stress and restraint stress were 20% (P=0.008) and 10% (P=0.03) lower, respectively, in BPH/2J mice treated with alloP compared with vehicle. No differences in stress responses or 24-hour BP were observed in BPH/2J mice treated with alloP compared with vehicle. Two weeks after treatment with alloP was terminated, 50% of the hypertensive effect of alloP on 24-hour BP in BPH/2J mice was reversed, suggesting that a portion of the cardioprotective effects of alloP persisted after treatment ceased.

Conclusion: Treatment of young mice with alloP effectively attenuated the development of hypertension, but these effects were partly reversed after treatment was withdrawn. This study suggests that targeting GABA receptors with alloP is a safe and effective long-term treatment for stress-related hypertension.

ROLE OF INSULIN-RESPONSIVE AMINOPHOSPHATASE IN THE REGULATION OF WATER HOMEOSTASIS, ARTERIAL PRESSURE AND RENAL FUNCTION

Kett M, Chai SY, Cai X, Denton KM

Department of Physiology, Monash University, Clayton, Victoria, Australia

Background: Insulin-responsive aminophosphatase (IRAP) is present in high concentrations in the kidneys, particularly in principle cells of the collecting duct. Vasopressin, a substrate of IRAP, induces the translocation of AQP-2 to the apical membrane of principal cells of collecting ducts to increase water reabsorption. Previous studies found that IRAP–/– mice have double the plasma vasopressin (consistent with reduced breakdown) and double the renal AQP-2 protein levels compared to WT mice.

Aim: To determine the functional significance of IRAP on sodium and water homeostasis.

Methods: 8-month-old male IRAP–/– and IRAP wild-type (WT) mice (n=12 per group) were placed in metabolic cages to collect 24 hour urine samples. Urinary excretion profile was examined at baseline and during 24 h of water deprivation. At 17 months GFR was measured (FITC-sinistrin clearance) and a subset of mice (n=5 per genotype) were implanted with radio telemetry devices to measure basal arterial pressure. Mice were then placed on a high salt (5% NaCl) diet and arterial pressure, GFR and 24 h urine excretion measurements were repeated.

Results: 24 hour urine excretion and water intake of IRAP–/– mice were ~25% less (P<0.01), and urinary osmolality was greater, than WT mice. Water deprivation led to a ~50% reduction in urine excretion, and increased arterial pressure. Chronic high salt diet increased sodium excretion 11-fold in both groups. Water intake and urine excretion were markedly increased on high salt (P<0.001). However, the increase in both was less in IRAP–/– mice (P<0.05). MAP was not different between genotypes, but FITC-sinistrin t½ was significantly lower and calculated GFR was significantly greater in IRAP–/– compared to WT mice (71±62 vs. 67±39 μL/min/100g body weight). High salt increased MAP by ~12 mmHg and reduced GFR in aged mice, but these changes were similar for each genotype.

Conclusion: The absence of IRAP did not impact on the ability of mice to concentrate urine in response to water deprivation. Nor did the absence of IRAP impede the ability of IRAP–/– mice to excrete a sodium load in response to a high salt diet. In conclusion, IRAP–/– mice maintain sodium and water homeostasis at lower levels of water intake and excretion. Further IRAP–/– may be protected from age-associated decline in GFR.

Y CHROMOSOME LINEAGE INFLUENCES IMMUNE-MEDIATED VASCULAR DYSFUNCTION VIA A PROSTANOID-DEPENDENT MECHANISM

*Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; **Department of Pharmacology, Monash University, Clayton, Victoria, Australia

Background: The hereditary lineage of the Y chromosome is an integral determinant of cardiovascular disease risk in males. Y chromosome lineage accounts for a 15–20 mmHg difference in arterial pressure as context. In a mouse model with Y chromosome replacement with the stroke-prone spontaneously hypertensive rat (SHRSP) is replaced with the normotensive Wistar Kyoto (WKY) Y chromosome (SP/WKY-Y) and vice versa (WKY/SP-Y). However, the gene(s) and mechanism(s) underlying this are not known. Vascular dysfunction is a hallmark of hypertension associated with augmented vascular cell inflammation.

Aims: To determine the influence of Y chromosome lineage on immune-mediated vascular dysfunction.

Methods: Standard organ bath methodology, flow cytometry and cytokine bioplex were employed.

Results: We observed impaired endothelium-dependent relaxation in the aorta of the SHRSP compared with the WKY (EC50 for acetylcholine: SHRSP: 7.3±0.1 vs. WKY: 7.9±0.1; P<0.01). Replacement of the SHRSP Y chromosome with the normotensive WKY Y chromosome (EC50 for acetylcholine: SP/WKY-Y: 7.7±0.1 vs. WKY: 7.9±0.1; P<0.01) improved vascular function through a reduction in constrictor prostanooid activity and a reversal of prostacyclin receptor dysfunction. In separate experiments, we showed that aortic T cell infiltration was higher in the SHRSP compared with the WKY (5.1±1.2 vs. 1.6±0.4 x106 cells; P<0.05), and introgression of the alternate Y chromosome reduced infiltration in SP/WKY-Y aortic T cells. Furthermore, T cells isolated from the SHRSP aorta displayed a higher Th1 cytokine skewing compared with the WKY, as indicated by a higher ratio of interferon gamma to interleukin-4 production that was reduced in SP/WKY-Y aortic T cells. Finally, overnight stimulation of T cells in aortas from all four strains with anti-CD3 and -CD28 antibodies worsened endothelial function only in SHRSP aortas (R0_untrated: 72.5±9% vs. T cell stimulated: 39±5%; P<0.05). Importantly, inhibition of constrictor prostanooid production reversed T cell-stimulated vascular dysfunction in the SHRSP. Scavenging of reactive oxygen species (ROS) also abrogated vascular dysfunction and prevented elevated constrictor prostanooid production in T cell-stimulated SHRSP aortas, highlighting a close interaction between ROS and cyclooxygenase activity.

Conclusion: Y chromosome lineage influences immune-mediated vascular dysfunction via a prostanooid-dependent mechanism in the SHRSP, a widely used animal model of hypertension.

INTRA-RENAL AND URINARY OXYGENATION DURING NORADRENA LINEAL RESSICATION IN CONSCIOUS OVINE SEPTIC ACUTE KIDNEY INJURY

Lankadeva YR, Kosaka J, Evans RG, Bellomo R, May CN*

*Forey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; **Department of Physiology, Monash University, Clayton, Victoria, Australia; ***Department of Intensive Care and Department of Medicine, Austin Health, Melbourne, Victoria, Australia

Background: Septis is commonly associated with hypotension and acute kidney injury (AKI), leading to high mortality rates in patients. There is increasing evidence that renal tissue hypoxia may play a critical role in the pathogenesis of AKI. Noradrenaline (NA) is the principal vasopressor used to reverse hypotension and maintain renal function in septic patients, but its effect on intra-renal oxygenation is unknown.

Aim: To measure renal cortical and medullary tissue oxygenation during noradrenaline resuscitation in conscious ovine septic acute kidney injury.
ducts, to examine whether urinary PO2 and medullary tissue PO2 changed in a similar manner during development of septic AKI and treatment with NA.

Methods: Sheep were instrumented with a renal artery flow probe and fibre-optic probes in the cortex and medulla to measure tissue perfusion and oxygenation. An oxygen probe was inserted into the tip of the bladder catheter for measurement of urinary oxygenation. Conscious sheep received a continuous infusion of live Escherichia coli (2.8 × 10^8) i.v. for 32 h. NA (0.4–0.8 μg/kg/h, n=6) or saline-vehicle (n=6) was infused from 24–30 h of sepsis.

Results: Prior to treatment with NA or saline, septic AKI was characterized by hypotension (~14 mmHg), renal hyperperfusion (~70%) and oliguria. Medullary perfusion (1289±95 to 612±113 blood flow units (BPU)), medullary oxygenation (32±3 to 16±4 mmHg) and urinary oxygenation (36±2 to 24±2 mmHg) were all significantly reduced. Restoring blood pressure with NA further reduced medullary perfusion (331±64 BPU), medullary oxygenation (8±2 mmHg) and urinary oxygenation (18±4 mmHg) compared with vehicle treatment. In contrast, cortical perfusion and oxygenation were preserved.

Conclusion: Renal medullary hypoxia due to intra-renal blood flow redistribution may contribute to the development of septic AKI. Resuscitation with NA reversed septal dysfunction or hypotension, but exacerbated the medullary hypoxia. This may have long-term effects in worsening kidney injury. The parallel changes in medullary tissue and urinary oxygenation during development of sepsis and infusion of NA suggest that urinary oxygenation may be a useful real-time biomarker to monitor patients at risk of developing AKI.

TRANSCARDIAC GRADIENT OF CARDIO-microRNAs IN THE FAILING HEART

Marques FZ1, Vizi D2, Khammy O3, Mariani JA4, Kay DM5

1Heart Failure Research Group, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; 2The Heart Centre, Alfred Hospital, Melbourne, Victoria, Australia

Background: Circulating microRNAs have been associated with heart failure and could potentially be used as biomarkers for diagnosis and disease pathogenesis. Whether microRNAs accurately reflect cardiac turnover rather than systemic disturbances is unclear.

Aim: To determine the transcardiac gradient of 84 microRNAs involved in cardiovascular development and disease in human failing hearts.

Methods: Eight healthy volunteers and 9 patients with congestive heart failure were included in this study. Arterial and coronary sinus blood samples were collected simultaneously and microRNAs were extracted from plasma. The expression of microRNAs was analysed using real-time semi-quantitative PCR by the miScript miRNA PCR Array Human Cardiomyocyte Disease. The transcardiac gradient was calculated by subtracting microRNA expression levels in arterial blood from microRNA levels in coronary sinus samples. A P value of <0.05 was considered significant.

Results: In coronary sinus samples, the microRNAs miR-16-5p, miR-27a-3p, miR-27b-3p, miR-29b-3p, miR-29c-3p, miR-30e-5p, miR-92a-3p, miR-125b-5p, miR-140-5p, miR-195-5p, miR-424-5p and miR-451a were significantly down-regulated, and let-7a-5p, let-7c-5p, let-7e-5p, miR-23b-3p, miR-107, miR-155-5p, miR-181a-5p and miR-320a were up-regulated in heart failure. Left ventricular filling pressure was negatively correlated with miR-195, miR-16, miR-23b-3p, miR-29c-3p, miR-451a and miR-92a-3p, and all had receiver operating characteristic analysis between 0.806 and 0.875. miR-140-5p was the only microRNA released from the healthy heart, while the failing heart released let-7b-5p, let-7c-5p, let-7e-5p, miR-122-5p and miR-21-5p, and absorbed miR-16-5p, miR-17-5p, miR-27a-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-130a-3p, miR-140-5p, miR-199a-5p and miR-451a. The transcardiac gradient of microRNAs in heart failure targeted pathways related to heart disease, including extracellular-matrix receptor interaction, transforming growth factor beta signaling pathway, and cytokine-cytokine receptor interaction.

Conclusion: The transcardiac gradient of cardio-microRNAs in failing hearts was determined. The results support the use of some microRNAs as potential biomarkers and therapeutic targets. MicroRNAs identified in the present study are likely to have a role in the pathophysiology of heart failure, since they are involved in pathways related to disease progression, including fibrosis.

A POLYMORPHISM IN A microRNA-BINDING SITE IN THE MESSERGEN RNA FOR THE NORADEINERAL TRANSPORTER MAY INCREASE RISK OF CARDIOVASCULAR DISEASE DEVELOPMENT

Marques FZ1, Ekelis N2, Lambart EA2,3, Schlaich MP4,5, Eiser MD6,7, Barton DA6,8, Lambert GW9

1Heart Failure Research Group; 2Human Neurotransmitters and Neurovascular Hypertension & Kidney Disease Laboratories, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; 3Department of Physiology and 4Department of Medicine, Monash University, Melbourne, Victoria, Australia

Background: Noradrenaline released from sympathetic nerves is removed from the synapse via the action of the noradrenaline transporter (NET). NET impairment is evident in several clinically important conditions, including essential hypertension, major depressive disorder, panic disorder and the postural orthostatic tachycardia syndrome. Only in rare instances, however, do coding single nucleotide polymorphisms (SNPs) seem to account for a defect in NET.

Aim: To determine whether rs7194256 (T), a SNP in the 3’ untranslated region (UTR) of the mRNA of the gene NET is associated with diseases associated with NET dysfunction, and to elucidate the mechanism involved.

Aocardiovascular disease (CVD) is associated with diseases associated with NET dysfunction, such as the arteries and brain.

INHIBITION OF INTERLEUKIN-1B SIGNALING PATHWAY IN THE VENTROMEDIAL HYPOTHALAMUS

Ling YH1, Krishnan SM2, Chan CT2, Diep H2, Samuel CS2, Hewitson TD2, Mansell A3, Lambert GW4,5

1Department of Pharmacology, Monash University, Clayton, Victoria, Australia; 2Department of Nephrology, Royal Melbourne Hospital, Parkville, Victoria, Australia; 3Heart Failure Research Group, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; 4Department of Medical Research, Clayton, Victoria, Australia

Background: Obesity during pregnancy is associated with a greater risk of developing hypertension in the offspring. Plasma leptin levels correlate strongly with blood pressure and renal sympathetic nerve activity (RSNA). The ventromedial hypothalamus (VMH) is a key centre of energy homeostasis, homeodynamics and sympathetic tone to the renal vasculature. It is possible that exposure to over-nutrition during development changes the activity of the neurons, amplifying sympathetic output leading to hypertension in the offspring. We assessed the contribution of the leptin and melanocortin (MC) signaling pathway in the VMH of offspring that were born from obese mothers.

Aim: To determine whether maternal obesity plays a role in programming the leptin and melanocortin signaling pathway in the VMH.

Methods: Female New Zealand White rabbits were fed a high fat diet (13%; mHFD) or a control diet (4%, mCD) during pregnancy and lactation. Offspring received a control diet after weaning. All offspring received a VMH cannula and a renal nerve recording electrode. Experiments were conducted in conscious rabbits and mean arterial pressure (MAP), heart rate (HR) and RSNA were measured. Rabbits received increasing doses of α-melanocortin stimulating hormone (α-MSH, 0.3 and 1 nmol), SHU9119 (melanocortin receptor antagonist, 0.02 and 0.04 nmol), leptin receptor antagonist (S and 10 ug) or insulin receptor antagonist (0.01 and 0.05 μl).

Results: mHFD rabbits exhibited higher MAP and RSNA than mCD rabbits (<0.01). Levels of α-MSH, 0.3 and 1 nmol), SHU9119 (melanocortin receptor antagonist, 0.02 and 0.04 nmol), leptin receptor antagonist (S and 10 ug) or insulin receptor antagonist (0.01 and 0.05 μl).

α-MSH injection into the VMH increased MAP (6%), HR (+12%) and RSNA (+80%) of SHU9119 reduced MAP (~7%) in mHFD rabbits. Leptin receptor antagonist normalized hypertension in mHFD rabbits (<0.05). By contrast, no changes were observed following insulin receptor antagonist injections into the VMH, mCD did not respond to any drug injections into the VMH.

Conclusion: Exposure to over-nutrition during development alters the leptin and MC signaling pathway in the VMH of offspring that were born from obese mothers.
Methods: We genotyped by real-time semi-quantitative PCR (qPCR) the rs7194256 SNP in a cohort of 122 patients (including 64 hypertensives) and 55 healthy controls, all of European-descent, and validated the results in a larger cohort of 258 cases (124 hypertensives) and 238 controls. Bioinformatic analyses were then used to identify microRNAs that could bind to the RNA sequence in which the T allele was present. The effect of the T allele on expression of a luciferase reporter gene was then examined.

Results: Cases had significantly higher prevalence of the T allele, arterial noradrenaline, depression and anxiety scores, clinical and ambulatory systolic and diastolic blood pressures, and larger left ventricular mass index (all P<0.05). Carriers of the T allele also had higher arterial noradrenaline (P=0.002) and 3,4-dihydroxynorephinephrine (the intraneuronal metabolite of noradrenaline; P=0.016). Bioinformatic analyses showed that the presence of the T allele created a binding site for the microRNA miR-19a-3p. Luciferase reporter gene assays validated the ability of this microRNA to bind preferentially to the sequence containing the T allele (P<0.0001).

Conclusion: The T allele of the SNP rs7194256 when present in the 3'UTR of the NET mRNA is associated with diseases associated with NET dysfunction, including hypertension. This might be explained by the presence of a binding site for the microRNA miR-19a-3p in NET T alleles. A defect in NET function may potentiate the sympathetic nervous system signal, predisposing individuals to increased risk of cardiovascular disease development.

PSALMOTOXIN AFFORDS NEUROPROTECTION IN A CONSCIOUS MODEL OF STROKE IN HYPERTENSIVE RATS VIA SELECTIVE INHIBITION OF ACIDIC-SENSING ION CHANNEL 1A

McCarthy GA, Rash LD, Chassagnon RR, King GP, Widdd Red

*Department of Pharmacology, Monash University, Clayton, Melbourne, Victoria, Australia; **Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia

Background: Acid-sensing ion channel 1a (ASIC1a) is the primary acid sensor in mammalian brain and plays a major role in neuronal injury following cerebral ischemia. Evidence that inhibition of ASIC1a might be protective following stroke was previously obtained using psalmotoxin (PcTx1) from the venom of the tarantula, Psalmopoeus cambridgei. Since the ASIC1a-selective blocker PcTx1 is present at only 0.4% abundance in this venom, we wondered whether the observed neuroprotective effects were due to PcTx1 blockade of ASIC1a or inhibition of other ion channels and receptors by the hundreds of peptides and small molecules present in tarantula venom.

Aim: To examine whether pure PcTx1 is neuroprotective in a conscious model of stroke via direct inhibition of ASIC1a.

Methods: A forelimb ischemion model of stroke was induced in conscious spontaneously hypertensive rats (SHR) by administering endothelin-1 to the middle cerebral artery (MCA) via a surgically implanted cannula. Two hours later SHR were treated with a single intracerebroventricular dose of PcTx1 (1 ng/kg; n=9), an ASIC1a-inactive mutant of PcTx1 (1 ng/kg; n=7), or saline (n=10). Motor coordination was measured at 1 and 3 days after stroke and post mortem analyses of cortical and striatal infarct volumes, neuronal survival and apoptosis were performed 72 hours post MCA occlusion.

Results: PcTx1 markedly reduced cortical infarct volume from 108±22 mm² in vehicle-treated SHR to 32±10 mm² in PcTx1-treated SHR (P<0.05). Lower histological scores were observed at both 1 and 3 days after stroke. The PcTx1-treated animals showed an improvement in neurological score and motor function at both 24 and 72 hours after injury. In contrast, the inactive PcTx1 analogue had no effect on stroke outcome.

Conclusion: The present study is the first to demonstrate that selective pharmacological inhibition of ASIC1a is neuroprotective in conscious SHR, thus validating inhibition of ASIC1a as a potential treatment for stroke.

ASSOCIATION ANALYSIS OF FOXO3 LONGEVITY VARIANTS WITH BLOOD PRESSURE AND ESSENTIAL HYPERTENSION

*Department of Pharmacology, Monash University, Clayton, Melbourne, Victoria, Australia; **Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia

Background: Increased blood pressure (BP), especially sudden, unexpected and severe rises in women with preeclampsia considerably increases the risk of peripartum complications. Risk factors for preeclampsia include younger maternal age, nulliparity, obesity, smoking, family history, and genetic factors. In this study, we examined the association between genetic variants in the longevity-associated FOXO3 gene and essential hypertension.

Aim: To study the association between genetic variants in the FOXO3 gene and blood pressure.

Methods: Methods: Blood pressure was measured non-invasively in 220 women with a history of preeclampsia who delivered at the University of Queensland. The genotype data was obtained from the National Heart Foundation of Australia. The effects of genotype on blood pressure were analyzed using a linear regression model adjusted for age, body mass index, and parity.

Results: The results showed that women with the FOXO3 variant rs7194256 had significantly lower blood pressure compared to women without the variant (P<0.05). The variant was associated with lower systolic and diastolic blood pressure, especially in women with a family history of hypertension.

Conclusion: These results suggest that genetic variants in the FOXO3 gene may play a role in the development of essential hypertension in women with a history of preeclampsia.
Aim: To determine the BP effect of commonly used antihypertensives during anesthesia in an experimental model of preeclampsia.

Methods: Blood pressure was measured during anesthesia in 6 pregnant baboons (Papio hamadryas) with experimental preeclampsia (PE). Animals were given antihypertensives commonly used to manage preeclampsia (labetalol, methyldopa and hydralazine) at equipotent doses equivalent to mild starting dose rates commonly used in women with preeclampsia.

Results: When anesthetized with ketamine (the most commonly used anesthetic agent in PE), systolic BP increased significantly by 4.9 mmHg when animals were on labetalol (n=3; P<0.05), decreased by 0.5 mmHg when animals were on methyldopa (n=3; NS) and decreased by 4.4 mmHg when animals were on hydralazine (n=2; NS) as compared to systolic BP under ketamine anesthesia prior to receiving any medication. With propofol anesthesia (commonly used when anesthesia is required in women with preeclampsia), systolic BP decreased by 1.4 mmHg when animals were on labetalol (n=3; NS), decreased by 7.2 mmHg when animals were on methyldopa (n=2; NS) and increased by 2.8 mmHg when animals were on hydralazine (n=3; NS) as compared to systolic BP during propofol anesthesia prior to receiving any medication.

Conclusion: The present results show that the two anesthetic agents studied the greatest reduction in BP was achieved with hydralazine during ketamine anesthesia and met- yldopa during propofol anesthesia. It is likely that antihypertensive treatment affects BP during anesthesia, and that the interaction between antihypertensive and anesthetic agent is of clinical importance in managing sudden, unexpected and severe rises in BP in women with preeclampsia.

EFFICACY OF RENAL DENERVATION IN A RABBIT MODEL OF CHRONIC KIDNEY DISEASE

Safa Y, Burke SL, Sluiter MP, Head GA

Background: Chronic kidney disease (CKD) is an increasing disease burden affecting nearly 1 in 20 Australians. CKD is associated with activation of the sympathetic nervous system and elevated blood pressure (BP). Renal denervation is a commonly used method of determining the role of the renal nerves in the maintenance of blood pressure (BP) in a number of animal models. In hypertensive patients, the efficacy of renal ablation increases between 1 and 3 months after the procedure. We have developed a CKD model in rabbits which showed hypertension and elevated renal sympathetic nerve activity (RSNA). Whether the elevated blood pressure is dependent on intact renal afferent or efferent nerves remains unclear.

Aim: To examine cardiovascular changes after renal denervation over a 4 week period in this model.

Methods: CKD was induced by lesioning 5/6th of the glomerular layer of the renal cortex in one kidney and removing the contralateral kidney. We examined the role of the renal nerves by denervating the kidneys after 2 weeks of CKD. Blood parameters, BP and RSNA were examined in the 4 weeks following denervation (CKD+RNX; n=4) or sham denervation (CKD+sham; n=4).

Results: After induction of CKD, BP increased by 16% from baseline BP of 67±1 mmHg (n=8; P<0.001) but heart rate decreased by 4% (P<0.05). BP in the CKD+sham group continued to rise and at week 4 was 9% higher than pre-denervation BP of 80±1 mmHg. By contrast, BP in the CKD+RNX group did not change after denervation and over 4 weeks there was a marked difference between the groups (P<0.001). In the CKD+RNX rabbits, heart rate was 7% lower after denervation, which was not observed in the CKD+sham group (P=n.s.). RSNA, measured over 4 weeks following renal denervation, was also lower in the CKD+RNX (22±4.0 nu) vs. the CKD+sham group (10±2.5 nu; P<0.001). Plasma creatinine and urea were 60% and 99% greater, respectively, than baseline in CKD+sham rabbits over the 4 weeks after inducing CKD (n=8; P<0.001). There was a fall in both parameters over the next 4 weeks and was similar in CKD+RNX and CKD+sham rabbits.

Conclusion: Our results suggest that the renal nerves make a major contribution to the hypertension associated with CKD and that renal denervation may be a suitable treatment for CKD.

POTENTIAL ROLE OF THE SYMPATHETIC NERVOUS SYSTEM IN REGULATION OF THE SODIUM GLUCOSE CO-TRANSPORTER 2

Schlaich MP, Elliott RH, Rudnica C, Matthews VB

Dobney Hypertension Centre, School of Medicine and Pharmacology – Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia

Background: Sympathetic nervous system activation is a common feature in various metabolic disorders such as obesity, metabolic syndrome, and type 2 diabetes. The sodium glucose co-transporter 2 (SGLT-2) mediates re-absorption of glucose from the renal proximal tubules. SGLT-2 inhibitors have garnered attention due to their glucose and blood pressure lowering effects. We hypothesized that sympathetic nervous system-induced alterations of glucose metabolism may be mediated via regulation of SGLT-2.

Aim: To examine the consequences of cDNX (i) on basal BP and renal function and (ii) in response to reflex activation of sympathetic nerve activity (SNA) triggered by hemorrhage in hypertensive sheep with chronic kidney disease (CKD).

Methods: Sheep with established hypertension and renal dysfunction (CKD group) with an appropriate control group were used. At 10 months of age, some animals underwent cDNX (CKD-cDNX; control-cDNX) while the remaining underwent sham procedure (CKD-intact; control-intact). At 2 months post-cDNX, BP, renal function and plasma renin activity (PRA) were assessed before, during and after hemorrhage (20% blood volume withdrawn over 15 minutes).

Results: Sheep with hypertension and CKD that underwent cDNX had similar BP to control sheep. Sheep that underwent cDNX had significantly greater urinary excretion of sodium (control-cDNX vs. control-intact; P=0.01; CKD-cDNX vs. CKD-intact; P=0.04) compared to their intact counterparts. In response to hemorrhage, BP fell in all groups but the greatest decrease occurred in CKD-cDNX. In control-intact sheep this fall in BP gradually recovered, associated with vasodilation (compared to PRA) and stimulating reflex peripheral vasodilation (PRA). In contrast, in control-cDNX and CKD-cDNX groups, PRA did not increase and BP did not recover, reflecting an absence of increase in reflex SNA.

Conclusions: Intrinsic SNS measures were reduced in control sheep early in the course of their disease. This was not explained by disability status scores accounting for time (MSSS) and raises the possibility that earlier treatment influences autonomic function in MS. Given that altered cardiac autonomic tone is an adverse prognostic factor in cardiovascular disease and cardiovascular mortality is overrepresented in MS, the impact of immunomodulatory medication on autonomic preservation warrants further study.

BARORECEPTOR SENSITIVITY IS RELATED TO TREATMENT DELAY IN AMBULANT MULTIPLE SCLEROSIS SUBJECTS – A NON-INVASIVE AUTONOMIC FUNCTION ANALYSIS

Shirbani E, Barin E, Lee YC, Ng K, Butlin M, Avolio A, Parratt J

1Masquerie University Hospital Clinic, Sydney, New South Wales, Australia; 2Department of Neurology, Royal North Shore Hospital, University of Sydney, Sydney, New South Wales, Australia

Background: Studies show that autonomic dysfunction relates to poor control and extent of disease in multiple sclerosis (MS). Beat-to-beat baroreceptor sensitivity (BRS) measured by the sequence technique (ST) provides a near-instantaneous measure of intrinsic baroreceptor tone. The baroreflex mediates arterial blood pressure responses driven by sympathetic autonomic tone.

Aims: To assess differences in short-term beat-to-beat non-invasive BRS, as well as heart rate variability (HRV), in MS subjects treated with immunomodulatory therapy early versus later in the course of their disease.

Methods: Patients (n=39; age 49±13 SD years; 13 male) were studied using a finger cuff pressure device (Edwards Nexfin®). Recordings of 5 minutes were obtained and intrinsic BRS curves were derived by ST, then correlated with vasomotor, HRV and clinical characteristics, including disability. Subjects treated early (ET < 2 years) or later (NET ≥ 2 years) were categorized into lower BRS values (below the group median value of 9.98) or high BRS those above the median. Electrocardiograms, time-based HRV and power spectral analysis (PSA) of HRV at very low frequencies (VLF <0.04 Hz), low frequencies (LF 0.04–0.15 Hz) and high frequencies (HF 0.15–0.4 Hz) were also measured. The Mann-Whitney U test was used to compare inter-group differences, and χ2 was used for comparison of proportions, with significance set at P<0.05.

Results: Average duration of diagnosis of MS was 14±12 years. ET vs. NET patients were younger (40±11 vs. 53±12 years; P<0.01) and had relatively higher BRS (9.11±1 in ET vs. 10/18±1 in NET; P<0.01). The mean BRS (mmHg/s) were 13.8±6.6 in ET vs. 10.3±5.2 in NET (P<0.07; not significant). In high BRS subjects PSA HF power (ms2) was 2621±2496 in ET vs. 3430±625 in ET (P<0.01), with no differences at other frequencies. In low BRS subjects HF power (ms2) was 550±73 in ET vs. 389±1361 in ET (P=0.01). Mean multiple simultaneous score (MSSS) values were 2.3±1.5 vs. 2.5±1.9 (P<0.01) in ET vs. NET, respectively.

Conclusions: Intrinsic BRS measures were measured by ST were higher in MS subjects treated early in the course of their disease. This was not explained by disability status scores accounting for time (MSSS) and raises the possibility that earlier treatment influences autonomic function in MS. Given that altered cardiac autonomic tone is an adverse prognostic factor in cardiovascular disease and cardiovascular mortality is overrepresented in MS, the impact of immunomodulatory medication on autonomic preservation warrants further study.
Conclusions: cDNK effectively reduced BP at 2 months post-cDNK in previously hypertensive stroke. However, the lack of reflex activation of neural mechanisms observed during hemorrhage suggest that cDNK may impair a patient’s ability to adequately respond to physiological challenges.

THE POTENTIAL THERAPEUTIC VALUE OF ALLOPREGNANOLONE TO TARGET STRESS-RELATED HYPERTENSION

Stevenson E1, Johns EM2, Jackson KL3, Evans RG, Marques FZ, Davern PJ, Head GA4
1Department of Pharmacology, Monash University, Melbourne, Victoria, Australia; 2Neuropsychopharmacology Laboratory, Baker ID, Melbourne, Victoria, Australia; 3Department of Physiology, Monash University, Melbourne, Victoria, Australia

Background: Stress-related hypertension is associated with increased activity and functional connectivity of forebrain neurons that integrate the response to stress. Hypertensive Schlager (BPH/2J) mice serve as a model for stress-related hypertension, displaying hyperactivity of stress pathways in addition to exaggerated pressor responses to stress. Functional alterations in the receptors of the major inhibitor mediator, GABA, are evident across numerous models of hypertension, including BPH/2J mice. Allopregnanolone is an endogenous neurosteroid reduced by chronic stress and which serves to enhance tonic inhibition through positive allosteric modulation of GABA receptors.

Aim: To determine whether allopregnanolone reduces both basal blood pressure and the pressor response to stress when administered centrally and peripherally.

Methods: Mice received allopregnanolone or its vehicle for a period of two weeks via two treatment paradigms, an intracerebroventricular cannula (0.31 mg/kg/day) or a subcutaneous minipump (0.31 mg/kg/day or 5 mg/kg/day). Prior implantation of telemetric probes enabled cardiovascular recordings before and after minipump insertion or attachment to the chronic guide cannula. The cardiovascular response to dirty cage switch and restraint were recorded before and after minipump implantation. Changes in GABA, mRNA expression were assessed by semi-quantitative reverse transcriptase (qRT)-PCR and changes in neuronal activity were assessed by Fos expression.

Results: Both central and high dose peripheral delivery of allopregnanolone selectively reduced mean arterial pressure (~7.3±2.9 and –9.0±3.0, respectively, P<0.04) and the pressure response to aversive stress in BPH/2J mice (by 13–19%; P<0.03 for all). These effects were not observed for low dose peripheral delivery of allopregnanolone in BPH/2J mice or any of the treatment paradigms in BPH/2J mice. Allopregnanolone abolished the elevated Fos expression observed in BPH/2J mice in both the medial amygdala and hypothalamus. Additionally, the expression of hypothalamic GABA receptor subunits (β2, δ and β2) mediating tonic inhibition were increased following allopregnanolone selectively in BPH/2J mice (P<0.05 for all).

Conclusion: Taken together the present results suggest that allopregnanolone mediates reductions in both mean arterial pressure and the pressor response to stress via central mechanisms and not peripheral mechanisms. As GABA dysfunction appears to be conserved across numerous models of hypertension, the findings highlight a potential clinical avenue for the treatment of stress-related hypertension.

BENEFICIAL CARDIAC EFFECTS OF THE ANGIOTENSIN CONVERTING ENZYME 2 ACTIVATOR DIMINAZENE IN AN EXPERIMENTAL MODEL OF KIDNEY DISEASE

Velokina E, Patel SK, Griggs K, Burrell LM

Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia

Background: The prevalence of kidney disease is increasing worldwide and cardiovascular disease remains the major cause of morbidity and mortality. Angiotensin converting enzyme (ACE) 2 is an important modulator of the renin-angiotensin system (RAS) through its role in hydrolysis of angiotensin (Ang) (I). ACE2 can be activated by dimazene acetate (DIZE). Kidney disease secondary to subtotal nephrectomy (STxN) is associated with activation of the traditional RAS pathway, kidney impairment and adverse cardiac remodeling.

Aim: To assess the effects of short-term DIZE on cardiac structure and function in control and STNxN rats.

Methods: Female Sprague Dawley rats underwent STxN and were treated for 2 weeks with either vehicle or DIZE (15 mg/kg/day, s.c.). Control rats were also treated with vehicle or DIZE (all groups, n=8 per group). Blood pressure and cardiac function were measured by catheterization of the left ventricle. Results: STNxN rats were hypertensive (BP difference: P<0.01) and exhibited cardiac hypercontractility and diastolic dysfunction (both P<0.05), left ventricular hypertrophy (P<0.001), intimal fibrosis (P<0.001) and perivascular fibrosis (P<0.01), fibrosis, and elevated cardiac brain natriuretic peptide (BNP) mRNA (P<0.001). STxN rats had elevated cardiac ACE2 and ACE activity (both P<0.05 vs. control). In STxN, DIZE improved diastolic function, intimal and perivascular fibrosis (all P<0.05 vs. STxN-vehicle), and reduced BNP mRNA (P<0.05). The cardiac benefits of DIZE were associated with reduced cardiac ACE activity (P<0.05) and continued elevation in cardiac and plasma ACE2 activity.

Conclusion: DIZE shifted the cardiac ACE and ACE2 activity balance to a cardioprotective profile in STxN rats, but had no effect in control rats with normal kidney function and a balanced RAS. It remains unclear whether DIZE has direct effects to stimulate ACE2 activity or whether the elevation in ACE2 activity is secondary to effects to maintain the increase in ACE2 mRNA abundance. Studies are needed to investigate if combining DIZE with standard RAS blockade has additive effects to ameliorate the adverse cardiac consequences of kidney disease.

AGE-DEPENDENT BLOOD PRESSURE DIFFERENCES OVER CONSECUTIVE MEASUREMENTS: IMPLICATIONS FOR HYPERTENSION DIAGNOSIS AND GUIDELINES

Veloudi P, Blizard L, Veladai K, Schultz MG, Sharman JE

1Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; 2Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia

Background: There is anecdotal belief that clinic blood pressure (BP) decreases over consecutive measurements. This has led to some international guidelines to recommend that the first BP reading should be discarded, or that only one reading should be used if systolic BP (SBP) is <140 mmHg. However, the magnitude and direction of the SBP difference between consecutive measurements is not clear, and the effect of age and BP level on this difference is unknown.

Aims: To investigate (i) the interaction between SBP level and age on the differences in SBP observed over consecutive measurements, and (ii) the consequent effect on hypertension diagnosis.

Methods: Duplicate BP (or triplicate if large BP differences) was recorded by oscillometry among 20,318 participants (aged 46 years [95% CI: 46–47]; males 50%) from the 2011–2013 Australian Health Survey. Primary outcome was the absolute difference between the first two SBP readings. Reclassification of BP category was defined as the change of a participant’s BP status either from hypertension at SBP1 to normal SBP, or from normal SBP at SBP1 to hypertension based on: (1) the average of SBP1 and SBP2, (2) the average of SBP1, SBP2 and SBP3 and (3) the average of the SBP2 and SBP3, discarding SBP1.

Results: SBP decreased between the first two measurements in 56%, but increased in 37%, and did not change in 7% of the population. There was a strong, age-dependent, J-curved relationship between the difference in SBP from reading 1 to reading 2 and SBP level (P<0.001), with the smallest difference between readings corresponding to controlled SBP (<140 mmHg). The age-dependent difference in SBP resulted in significant diagnostic reclassification compared to an approach of discarding the first reading, with 63% and 35% reclassified from hypertension to normal BP, and 4% and 13% reclassified from normal to hypertension among those aged <50 years and ≥50 years, respectively.

Conclusions: The assumption that SBP decreases over consecutive measurements is false and significant age- and BP-dependent reclassification of hypertension diagnosis exists across different diagnostic protocols. These findings highlight the need for change to some international hypertension guidelines.

THE EFFECT OF MOXONIDINE ON ANGIOTENSIN II-INDUCED ABDOMINAL AORTIC ANEURYSM IN MICE

Wang Y, Dinh TN, Parker K, Ashrafi A

School of Applied and Biomedical Sciences, Federation University Australia, Ballarat, Victoria, Australia

Background: Abdominal aortic aneurysm (AAA) affects ~5% of men aged >65 years and causes significant morbidity and mortality. Hypertension is regarded as a risk factor for the development and progression of AAA in humans. However, the study of AAA pathogenesis in humans is limited and there is no pharmacological treatment for patients with AAA. The use of appropriate animal models would have an important role in broadening our understanding of the pathogenesis of human AAA and in developing new therapies for AAA.

Aim: To assess the effect of moxonidine, a blood pressure (BP)-lowering drug, on the development of AAA in mice induced by angiotensin (Ang) II infusion.

Methods: Four groups (n=10 per group) of apolipoprotein E-deficient male mice were used. These animals received moxonidine in drinking water at concentrations of 0 mg/mL (control), 3.6 mg/mL (low dose), 15.4 mg/mL (medium dose) and 69.2 mg/mL (high dose) throughout the experiment. Three days after the initiation of the moxonidine treatment, AAA was induced by subcutaneous infusion of Ang II for 28 days. BP was measured by the tail cuff method at baseline, 2 weeks and 4 weeks after AAA induction by Ang II infusion. The aortas were assessed by morphometric analysis. The mortality rate due to aortic rupture was analysed by constructing survival curves.

Results: Ang II infusion significantly increased BP in mice. Minoxidine treatment, at every dose studied, significantly reduced BP. However, moxonidine treatment did not alter the maximum diameter of the aortic arch, thoracic aorta, suprarenal abdominal aorta and infrarenal abdominal aorta. In addition, moxonidine did not alter mortality rate.

Conclusion: The present study found that moxonidine does not affect the development of AAA induced by Ang II infusion in mice.

VASCULAR T CELL-ANTIGEN PRESENTING CELL INTERACTIONS DURING HYPERTENSION

1Department of Pharmacology and 2Center for Inflammatory Diseases, Monash University, Melbourne, Victoria, Australia

Background: T cells contribute to the development of experimental hypertension, which is associated with significant accumulation of T cells in the perivascular fat surrounding the aorta and renal vasculature. While a hypertension-specific neoantigen has been implicated in T cell activation, it is not known whether vascular-infiltrating T cells recognize, and are
locally activated, by an antigen within the vessel wall, indicators of antigen presentation are slower T cell velocities, greater interaction time and a greater proportion of T cells interacting with APCs (hT cells 10.7±2.3% vs. 1.5±0.7% for nT cells; P<0.01; n=8–11). Direct activation of local vascu-cells exacerbates Ang II-induced endothelial dysfunction (67.5±2.0% vs. 54.5±3.7% maximal relaxation for Ang II alone; P<0.05; n=7–14).

Conclusion: The present data provide the first evidence that vascular-infiltrating T cells are presented with cognate antigens by APCs within the vessel wall during hypertension and that direct activation of these T cell infiltrates further impairs endothelial function, thereby promoting the development of hypertension.

HYPERTENSION-INDUCED SYMPATHETIC ACTIVITY: ROLE IN STEM CELL MOBILIZATION, MONOCYTOSIS AND ATHEROSCLEROSIS

Whillas AT a,b, Al-Sharea AM a, Kraakman M c, Jefferis AM a, Shihtah WA b, Sampson AX a, Head GP b, Andrews KL b, Murphy AJ a, Chin-Dusting JPF a,b

Aim: To investigate whether sympathetic overdrive in the setting of chronic high BP leads to inflammatory diseases, mobilized stem cells home to the spleen where extramedullary hematopoiesis in the bone marrow (BM) inducing mobilization. In atherosclerosis and other cardiovascular disease. Because hypertension is a multifactorial disease, the exact mechanism(s) behind exaggerated sympathetic nervous system (SNS) activity in the setting of hypertension could promote atherosclerotic lesion development and a shift towards a more unstable plaque due to enhanced stem cell mobilization and monocyte recruitment in hypertensive mice. We postulate that this process is SNS-driven. BPHx mice showed significantly increased slow velocity (hT cells 2.6 mm/min vs. 4.4 mm/min for nT cells; P=0.01; n=8–11), slower T cell velocities, greater interaction time and a greater proportion of interactions with APCs (hT cells 10.7±2.3% vs. 1.5±0.7% for nT cells; P<0.01; n=8–11). Direct activation of local vascu-cells exacerbates Ang II-induced endothelial dysfunction (67.5±2.0% vs. 54.5±3.7% maximal relaxation for Ang II alone; P<0.05; n=7–14).

Conclusion: Increased plasma NE, and BM tyrosine hydroxylase expression was observed compared to saline-treated mice. As expected, BPHx mice exhibited higher systolic BP (139.1±2.0 mmHg vs. 103.2±1.0 mmHg; n=5–7; P<0.0001). The SNS-driven phenotype of the BPHx mice was confirmed as a decrease in BP was achieved after administration of propranolol: 141.9±3.1 mmHg vs. 119.2±1.8 mmHg; n=7; P<0.01). Abundance of hypertensive angiotensin (Ang) II-infused (0.7 mg/kg/day for 14 days; hT cells) C57BL6/J mice was followed by a decrease in BP in hypertensive mice and (ii) elucidate their direct effect on vascular and endothelial function.

Methods: C57BL6/J mice were treated with daily recombinant PLGF-2 (100 µg/kg/day, n = 7) or vehicle. To determine the effects of fludrocortisone on NCC, urinary exosomes were collected from 21 patients undergoing fludrocortisone suppression testing (100 µg, 6 h) to diagnostically exclude primary aldosteronism. Urinary exosomes were isolated by progressive ultracentrifugation and NCC, pNCC, WNK4 and SPAK expression were quantified by immunoblot, expressed as arbitrary units of protein.

Results: Of the above animals, control (n=5) and PLGF-2 treated by adrenalectomy for aldosterone-producing adenoma (n=4) had lower baseline aldosterone levels (352 vs. 681 pmol/L; P=0.08) and higher renin levels (14 vs. 5.5 mU/L; P=0.03). Sodium and potassium levels (4.4 vs. 3.4 mmol/L; P=0.013) than pre-treatment, but baseline levels of NCC, pNCC, WNK4 and SPAK did not differ significantly.

Conclusions: Mineralocorticoid administration causes a rapid and progressive increase in abundance and phosphorylation of NCC in humans. NCC abundance is stimulated to a greater extent than phosphorylation, and this appears to be via stimulation of the WNK4 pathway, with a lesser effect on SPAK. The findings widen the apparent role of aldosterone/mineralocorticoid receptor activation on distal renal tubular sodium handling and the importance of targeting this pathway for antihypertensive therapy.

HBPRCA Poster Presentations

LOW DOSE DIETARY NITRATE IMPROVES ENDOTHELIAL DYSFUNCTION IN THE APOE−/− MOUSE

Baker JR, Bondando NP, Croft KD, HUDJON JM, Kemp-Harper B, Gaspar T, Ward NC

Aim: To determine if dietary nitrate could protect against endothelial dysfunction and lesion formation in the ApoE−/− mouse fed a high fat diet (HFD).

Methods: ApoE−/− were randomized to receive either (i) high nitrate (10 mmol/kg/day; n=12), (ii) moderate nitrate (1 mmol/kg/day; n=8), or (iii) low nitrate (0.1 mmol/kg/day; n=8) in drinking water for 12 weeks. A group of ApoE−/− receiving sodium chloride in drinking water (n=10) served as control, while a group of C57BL6 mice (n=6) receiving tap water served as a healthy reference group. All mice were fed a high fat diet and at 10 weeks underwent ex vivo aortic aldehyde-methylated endothelial function assessment on isolated aortic rings.

Results: Vessel relaxation was significantly impaired in ApoE−/− mice versus C57BL6 mice. Mice supplemented with low or moderate dose nitrate showed significant improvements in vessels relaxed compared to ApoE−/− mice given the high nitrate dose or ApoE−/− mice given sodium chloride. Plasma nitrate and nitrite levels were significantly increased in all three groups fed the nitrate-supplemented water.

Conclusion: Low and moderate dose, but not high dose, nitrate improves vascular function in ApoE−/− mice fed a high fat diet.

EFFECT OF RECOMBINANT PLACENTAL GROWTH FACTOR 2 ON EXPERIMENTAL PREECLAMPSIA INDUCED BY TUMOR NECROSIS FACTOR-ALPHA IN PREGNANT MICE

Chau KY, Bobek G, Lim S, Hennessy A, Makris A

Aim: To evaluate the effect of pre-emptive supplemental PLGF-2 given to mice destined for experimental preeclampsia induced by tumor necrosis factor (TNF)-α infusion.

Methods: C57BL6 mice were treated with daily recombinant PLGF-2 (100 µg/kg/day, n = 9) or control (phosphate buffered saline 100 µL, n = 8) intraperitoneally from gestational day (gd) 13. On gd 13, the following treatments were commenced: continuous infusion of TNF-α (50 ng/kg/day). Of the above animals, control (n=5) and PLGF-2 (n=6) mice had continuous blood pressure measurements by radiotelemetry via a carotid artery
transducing device inserted at least 10 days prior to timed mating. The remaining animals (control
n=3, n=2; PLGF-2) were subject to multiecho magnetic resonance imaging in an 11.74 Tesla spectrometer on gd 17. Animals were euthanized at gd 17 and plasma, urine and tissue were collected for analysis. Data was expressed as mean±SEM.
Results: There was no difference in blood pressure or proteinuria (648±231 vs. 506±74 mmHg/mmol; P=0.59) between mice receiving control or PLGF-2. Serum FL1/FL2S ratio was significantly higher in mice administered PLGF-2 (333±18.6 vs. 493±14.6; P=0.007). There was also no observed difference in T2 lattitude/junctural zone ratio (P=0.59) in mouse placentas imaged (control, 2.22±0.11 n.m., vs. PLGF, 2.22±0.11 n.m.).
Conclusions: PLGF-2 does not ameliorate features of experimental preeclampsia induced by TNF-alpha infusion. Contrary to expectations, serum FL1/FL2S ratio rises with PLGF-2 treatment suggesting a potentially unfavourable effect of supra-physiological levels of PLGF prior to development of preeclampsia.

PREDICTIVE PERFORMANCE OF ECHOCARDIOGRAPHIC PARAMETERS FOR CARDIOVASCULAR EVENTS AMONG ELDERLY TREATED HYPERTENSIVE PATIENTS

Crowdhury BK*, Jennings G*, Dewar E*, Wing LMF*, Reid CM* on behalf of the ANBP2 Management Committee

*Centre of Cardiovascular Research & Education in Therapeutics, Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; *Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; *School of Medicine, Flinders University, South Australia, Australia; *School of Public Health, Curtin University, Perth, Western Australia, Australia

Background: Hypertension leads to cardiac structural and functional changes, commonly assessed by echocardiography. It is not clear which echocardiographic parameters are most predictive of future cardiovascular events among elderly treated hypertensive patients over the short or long term.

Aim: To assess the predictive performance of different echocardiographic parameters in relation to cardiovascular outcomes in elderly hypertensive patients.

Methods: Echocardiographic data from the Second Australian National Blood Pressure study were used. Participants aged ≥65 years at enrolment were followed for cardiovascular events and mortality for a median of 4.1 years (short-term) and then a further median of 6.9 years (long-term). Echocardiograms were performed at baseline to measure direct and derived parameters. Left ventricular hypertrophy (LVH) was defined using threshold values of left ventricular mass (LVM) indexed to either body surface area (BSA) or height2.7:

LVM indexed to BSA: >115/95 g/m2 or >24/45 g/m2/m2 (in males and females, respectively) and >125 g/m2 or >251 g/m2/m2 (for both sexes).

Results: The prevalence of LVH ranged from 33–70% among the study participants (n=679) at baseline depending on the threshold used to define LVH. Of the echocardiographic parameters, after adjusting for potential risk factors using Cox-proportion regression hazard models, only LVH defined using LVM-BSA (>115/95 g/m2) predicted cardiovascular events and mortality over the short and long-term. Participants having LVH at baseline had twice the risk (hazard ratio, 95% confidence interval) of having any first cardiovascular event: 9.1 (4.1–19.9, P<0.001) for the short-term (1.96, 1.1–3.45, P=0.02) and any fatal cardiovascular events (1.96, 1.1–3.7, P=0.002) over the long-term. Among other echocardiographic parameters, LV wall thickness, LV mass, and systolic dysfunction (i.e., abnormal fractional shortening) predicted only short-term cardiovascular events. Conclusions: In elderly treated hypertensive patients LVH identified by echocardiography based on LVM indexed to BSA (>115/95 g/m2) was a reliable predictor of future cardiovascular events and mortality.

CENTRAL-TO-BRACHIAL BLOOD PRESSURE AMPLIFICATION IN PATIENTS TYPE 2 DIABETES MELLITUS: A SYSTEMATIC REVIEW AND META-ANALYSIS OF NON-INVASIVE MEASUREMENT

Climie REPa, Otahal P*, Schultz MG*, Fell JW*, Srikanth V*, Sharmam JE.a

*Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; *School of Human Life Sciences, University of Tasmania, Launceston, Tasmania, Australia; *Stroke and Ageing Research Group, Monash Medical Centre, Department of Medicine, Southern Clinical School, Monash University, Melbourne, Victoria, Australia

Background: Brachial blood pressure (BP) may not reflect central BP due to systolic BP (SBP) amplification. Patients with type 2 diabetes mellitus (T2DM) elicit vascular irregularities that may affect SBP amplification or other central BP indices (including pulse pressure [PP], augmentation pressure [AP] and augmentation index [AI]), but this has never been systematically assessed by comparison to individuals without T2DM.

Aim: To determine, by systematic review and meta-analysis, the magnitude and variation of central-to-brachial SBP and PP amplification, AI and AP in patients with T2DM compared to those without.

Methods: Six online databases were searched for published studies reporting non-invasive central and brachial SBP in those with and those without T2DM. Random effects meta-analyses and meta-regression were used to analyze the studies.

Results: We identified 17 studies with a total of 2,711 patients with T2DM and 10,460 controls without T2DM. There was no significant difference in SBP amplification between groups (T2DM=10.8 mmHg, no T2DM=10.2 mmHg; pooled estimate = 0.6mmHg (95% CI –0.3 and 1.5, respectively; P=0.21), but there was a large variation in both (T2DM range = 2.0–16.5 mmHg, non-diabetic range = 1.0–2.1 mmHg). In the meta-regression, duration of T2DM explained 13.6% of the variance in the pooled data (P=0.15). The difference in amplification between groups increasing by 0.3 mmHg per year of T2DM. PP amplification was not significantly different between groups (P=0.16). AI, Aix and Aix corrected for heart rate were significantly higher in T2DM (P<0.05 for all).

Conclusions: Increased AP and Aix, but no difference in SBP (or PP amplification), compared to those without T2DM. However, SBP amplification is highly variable and increases with duration of T2DM, altogether confirming that central systolic loading cannot be assessed from brachial BP in patients with T2DM.

BLOOD PRESSURE RESPONSE TO RENAL DENERVATION IN PATIENTS WITH RESISTANT HYPERTENSION AND MULTIPLE RENAL ARTERIES

aNeurovascular Hypertension & Kidney Disease Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia; *School of Medicine and Pharmacology – Royal Perth Hospital Unit, University of Western Australia, Perth, Western Australia, Australia; *Heart Centre Alfred Hospital, Melbourne, Victoria, Australia; *Neuropharmacology Laboratory, Baker IDI Heart & Diabetes Institute, Melbourne, Victoria, Australia

Background: Renal denervation (RDN) has been demonstrated to lower blood pressure (BP) and muscle sympathetic nerve activity (MSNA) in patients with resistant hypertension (RH). Previous studies have predominantly included patients with single renal arteries bilaterally. Whether RDN is feasible, safe and effective in patients with multiple renal arteries or variable renal artery anatomy remains obscure.

Aim: To determine the efficacy of RDN in patients with RH and multiple renal arteries.

Methods: We measured 24-hour BP at baseline, 3 and 6 months after RDN in 91 patients with RH including 65 patients with single renal arteries bilaterally (Group 1), 16 patients with dual renal arteries on either or both sides (Group 2) and 10 patients with other anatomical constellations or structural abnormalities (Group 3). MSNA was obtained in 39 out of 91 patients at baseline and follow-up.

Results: RDN significantly reduced daytime SBP in group 1 from 152±17 mmHg at baseline to 145±14 mmHg at both 3 and 6 months follow-up (P<0.001), but not in group 2: 149±12 mmHg at baseline vs. 144±16 mmHg at 3 and 6 months follow-up (P=0.32), nor in group 3: 165±17 mmHg at baseline vs. 154±19 mmHg at 3 and 146±19 mmHg at 6 months follow-up (P=0.13). Resting baseline MSNA was only reduced in group 1, from 51±14 bursts/min at baseline to 45±17 bursts/min at 3 and 43±14 bursts/min at 6 months post procedure (P<0.05). There was no deterioration in kidney function in either group.

Conclusions: RDN can be performed safely in patients with RH irrespective of renal artery anatomy. The presence of single renal arteries with or without structural abnormalities is associated with a more pronounced RDN-induced reduction in BP and MSNA when compared to the presence of dual renal arteries. However, when patients with dual renal arteries underwent renal nerve ablation in all existing arteries, a greater BP reduction was observed suggesting that incomplete renal sympathetic denervation may account for differing BP responses.

SHOULD YOU LEAVE A LEGACY? POTENTIAL EFFECTS OF DELAYED BLOOD PRESSURE LOWERING PHARMACOTHERAPY IN INDIVIDUALS STRATIFIED BY ABSOLUTE CARDIOVASCULAR DISEASE RISK

aUniversity of Tasmania, Hobart, Tasmania, Australia; bBond University, Gold Coast, Queensland, Australia; cUniversity of Auckland, Auckland, New Zealand; dOxford University, UK; eMonash University, Clayton, Victoria, Australia; fCurtin University, Perth, Western Australia, Australia; gUppsala University Hospital, Stockholm, Sweden

Background: Cardiovascular disease (CVD) is still the major contributor to the global burden of disease. To ensure that medication is received by those most likely to benefit from it, many countries have introduced risk-based reimbursement schemes. However, this approach has become a matter of concern among clinicians who hesitate at adopting a treatment threshold based on the absolute risk of an individual and that based on the traditional individual risk factor of blood pressure (BP). Updated guidelines do not routinely recommend BP lowering drug therapy in a low absolute CVD risk population (a risk of a CVD event of less than 10% in the next five years) unless a systolic BP threshold of 160 mmHg is exceeded. Many GPs have expressed a concern that delaying pharmacotherapy may lead to irreversible target organ damage, a so called “legacy effect.” It is therefore timely to conduct a study addressing the question of whether earlier active BP lowering pharmacotherapy brings therapeutic benefits for a low risk population over their lifetime.

Aim: To investigate the effects of delayed BP lowering therapy on those with elevated BP over a spectrum of absolute risk (low [<10%], medium [10–15%] and high [>15%]) on all-cause and disease-specific mortality.

Methods: We will conduct a post-hoc analysis of long-term CVD mortality and all-cause mortality in the Australian National Blood Pressure study (ANBP). The ANBP study was conducted in the 1970s on 3,427 participants aged 40–69 years who were followed-up from the general population with mildly elevated BP and no history of CVD or diabetes. We plan to probability match all participants to the Australia Institute of Health and Welfare National Death Index.
and classify the cause of death by the International Classification of Disease version 10. All analyses will be based on the "intention-to-treat" principle. Cox proportional hazard models will be used to estimate hazard ratios and corresponding 95% confidence intervals.

Results: To date we have retrieved ANBP study archives and received funding from the Royal Australian College of General Practitioners Research Foundation. An ethics application is being prepared. Interim results will be presented if available.

Conclusion: The present findings might contribute to increasing the adoption of current guidelines into clinical practice by addressing clinician concerns. Such an approach has the potential to substantially reduce the number of well, symptom-free, individuals labeled as having a disease (hypertension) with attendant financial burdens (cost of drugs, monitoring and follow-up) and potential side effects.

KIDNEY TARGETED microRNA-181A MIMIC TREATMENT IN HYPERTENSIVE BPH/2J MICE

Jackson KL, Marques FZ, Stevenson EP, Charach FJ, Davem PJ, Head GA*

*Neuropsycharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, Melbourne, Victoria, Australia; School of Health Sciences, Federation University of Australia, Ballarat, Victoria, Australia

Background: BPH/2J mice are a genetic model of hypertension driven by greater activity of the sympathetic nervous system (SNS) and renin-angiotensin system (RAS). During the dark period of the 24-hour light cycle when hypertension is at its greatest, BPH/2J mice display enhanced renal renin mRNA, possibly related to lower levels of microRNA (miR-181a), which is a negative regulator of renin mRNA.

Aim: To determine whether lower renal miR-181a abundance contributes to elevated RAS activity and hypertension in BPH/2J mice.

Methods: BPH/2J and normotensive BPN/3J control mice (n=6–10) were administered miRNA mimic miR-181a mimics or vehicle control (0, 1, 5, 15 and 25 nmol, i.v) during the dark period of the 24-hour light cycle when hypertension is at its greatest, BPH/2J mice were then sacrificed before and for two days following treatment via pre-implanted radiofrequency probes.

The BP response to angiotensin converting enzyme (ACE) inhibition (enalapril) and ganglion blockade (pentolinium) was determined during the dark period ~26 h after a 25 mmol dose and kidney tissue was collected at ~50 hours for measurement of renin mRNA.

Results: The peak hypertensive effect of the mimic relative to vehicle treatment in BPH/2J mice was observed 12–15 h after the 5 nmol dose (~5.8±1.5 mmHg), which was greater than the effect in BPH/2J mice treated with the negative control (0.7±1.0 mmHg; P=0.02). However, the effect of the 1 and 25 nmol doses of mimic on BP were comparable between strains and with the negative control (vehicle treatment, P>0.10). Renal renin mRNA abundance in BPH/2J mice treated with the miR-181a mimic was lower than BPH/2J mice treated with the negative control (3.5±0.6 vs. 4.8±1.1; P=0.01), suggesting that the mimic effectively inhibited renin mRNA in vivo. By contrast renin mRNA was comparable in BPN/3J mice treated with either the mimic or negative control, respectively (3.1±0.7 vs. 2.6±0.7; P=0.45). Furthermore the depressor response to enalapril in BPH/2J mice treated with the negative control was abolished in BPH/2J mice treated with the mimic (~17±3 mmHg vs. -1.3±1.3 mmHg, respectively; P<0.001), suggesting the mimic reduced the RAS contribution to BP maintenance. The depressor response to pentolinium following enalapril pre-treatment was comparable between negative control and mimic-treated BPH/2J mice (~5±2± vs. -51±3 mmHg; P=0.80), suggesting the mimic does not overly affect the SNS contribution to BP in BPH/2J mice.

Conclusion: The present findings provide the first in vivo evidence that low miR-181a levels contribute to greater renal renin mRNA level and thereby a contribution of the RAS to the hypertension in BPH/2J mice.

THE EFFECTS OF 8 WEEKS OF INTERVAL SPRINTING EXERCISE ON CARDIOVASCULAR FUNCTION OF OVERWEIGHT POSTMENOPAUSAL WOMEN

Liu D, Lin DP, Boucher SH, Boucher YN

School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia

Background: The effect of interval sprinting exercise (ISE) on cardiovascular function of overweight postmenopausal women has not been determined.

Aim: To determine the effect of an 8-week ISE intervention consisting of three weekly 20-min bouts of ISE on cardiac autonomic function.

Methods: Twenty postmenopausal women (BMI 28.8±6.09 kg/m²; age 53.3±1.3 years) were randomly assigned to an ISE or a control group. Participants underwent pre- and post-training testing including an aerobic fitness test and heart rate and blood pressure variability analysis to measure autonomic influence on the heart. ISE participants undertook 24 supervised exercise sessions that involved 8 s sprinting on a cycle ergometer followed by 12 s of easy pedalling, repeated for a total of 20 minutes.

Results: ISE compared to control women significantly (P<0.05) improved their aerobic fitness (2.33±0.11 vs. 1.79±0.11 L/min). Baroreceptor sensitivity of the ISE (9.33±0.81 ms/mmHg) increased significantly at post-test (P<0.05) compared to the control group (6.86±1.69 ms/mmHg).

Conclusion: Twenty minute bouts of ISE repeated over 24 sessions led to a significant improvement in aerobic fitness and a significant increase in baroreceptor sensitivity.

BARIOPRESS SENSITIVITY IN DIABETIC RATS WITH TREATED AND UNTREATED HYPERTENSION

Ramachandran H, Salum E, Kampus P, Kals J, Town G, Avello AP, Butlin M *

*Faculty of Engineering, Macquarie University, Sydney, New South Wales, Australia; *Department of Cardiology, University of Tartu, Tartu, Estonia; Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia

Background: Diabetes is associated with raised blood pressure (BP) and cardiovascular risk. Baroreceptor sensitivity (BRS) is a feedback mechanism controlling spontaneous changes in BP and decreases with age and in different diseases.

Aim: To quantify BRS through spontaneous changes in BP in diabetic rats and rats treated with antihypertensive therapy.

Methods: Male Wistar rats (aged 6 weeks) were divided into control (n=8), control with antihypertensive treatment (control+Tx, telmisartan, 10 mg/kg/day; n=5), induced diabeteic rats (diabetes; n=8) and diabetes with antihypertensive treatment (diabetes+Tx; n=8). At 18 weeks, rats were anesthetised (urethane, 1.3 g/kg) and an electocardiogram performed and aortic BP was measured (1.2 F solid-state pressure tipped catheter, introduced via the femoral artery). BRS was quantified using custom-written scripts to detect sequences of at least 3 pulses with a minimal systolic BP change of 1 mmHg and minimum R-R change of 1 ms.

Results: Both control (142±16 mmHg) and diabetic (132±22 mmHg) rats were hypertensive. Anti-hypertensive treatment successfully lowered systolic BP (control+Tx 105±11 mmHg; diabetes+Tx 119±14 mmHg). Antihypertensive treatment did not alter BRS for either controls (0.87±0.45 ms/mmHg vs. control+Tx 0.88±0.33 ms/mmHg; P=0.95) or diabetic rats (diabetes 1.25±0.29 mmHg/mmHg vs. diabetes+Tx 1.46±0.04 mmHg; P=0.56). There was also no difference between diabetic rats and controls (P=0.08) or those with antihypertensive treatment (P=0.25).

Conclusions: Despite altering BP through antihypertensive therapy, BRS measured through spontaneous changes in BP, was unchanged for both control and diabetic animals.

INHIBITING MITOCHONDRIAL FUSION WITH MIDI-V1 IMPROVES SURVIVAL OF HUMAN CARDIAC RESIDENT STEM CELLS

Rosdah AA, Sivakumaran P, Delbridge LMD, Lim SY *

O’Brien Institute Department, St. Vincent’s Institute, Melbourne, Victoria, Australia; Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia

Background: Stem cell therapy is a promising approach to treat myocardial infarction. However, survival of transplanted cells is poor due to the hostile environment of the infarcted heart. Therefore, novel strategies are needed to improve the survival of stem cells post-transplantation. Mitochondria are morphologically dynamic organelles constantly undergoing
fission and fusion, processes essential to maintain organelle function and cell viability. Inhibiting mitochondrial fission has been shown to promote survival of several cell types. However, its role in survival of human cardiac resident stem cells (CRSCs) remains unknown.

Aim: To determine whether Mdivi-1, an inhibitor of mitochondrial fission protein DRP1, can improve survival of a novel population of human CRSCs.

Methods: Wild-type (WT) controls (n=4–8) were implanted with radiotelemetry probes allowing measurement of systolic blood pressure (SBP) measured over 24 h was similar in all groups before and after chronic stress treatment, all strains showed a similar attenuation in pressor response to dirty cage switch and restraint stress (P>0.10). However, when introduced to a novel shaker stress, chronically stressed WT mice showed a 37% and 150% greater pressor response when compared to chronically stressed TG and KO mice, respectively (P<0.04).

Conclusion: IAP is not involved in the pressor response to chronic stressors under long-term adverse conditions. Similar findings in the overexpression of IAP and knock-out mice suggests that there may need to be an optimal level of IAP.

PREVENTORS OF MORTALITY IN NEWLY DIAGNOSED HEART FAILURE PATIENTS: A MATCHED NESTED CASE-CONTROL STUDY

Sahie B1, Owen AJ1, Reid CM1,2

1Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Victoria, Australia; 2School of Public Health, Curtin University, Perth, Western Australia, Australia

Background: Despite advances in therapeutics, the prognosis of patients with heart failure (HF) remains poor. The etiology and clinical course of HF varies significantly, and, importantly, the risk factors for prognosis also varies according to the spectrum of the syndrome and patient characteristics.

Aim: To identify the long-term predictors of mortality in hypertensive patients with newly diagnosed HF.

Methods: A matched case-control study, nested within the Second Australian National Blood Pressure Study (ANBP2) and ANBP2 post-final follow-up study. Case subjects were HF patients diagnosed after enrolment in the study and who had died during the follow-up. Controls subjects were 1:1 matched to cases based on age (5 year range), sex and calendar year. A total of 147 cases and their 147 randomly matched controls were included in the analysis. Adjusted odds ratios (AOR) and 95% confidence interval (CI) were calculated using multiple logistic conditional regressions.

Results: Mortality was associated with pre-existing diabetes (AOR=2.17, 95% CI 1.31–7.87; P=0.01), impaired renal function (AOR=2.03, 95% CI 1.07–3.96; P=0.03) higher systolic BP (AOR=1.03, 95% CI 1.01–1.05; P=0.01) and current smoking (AOR=3.62, 95% CI 1.11–11.8; P=0.03). However, neither diastolic BP (AOR=0.99, 95% CI 0.96–1.02; P=0.65), overweight (AOR=0.85, 95% CI 0.45–1.58; P=0.60) nor obesity (AOR=1.13, 95% CI 0.55–2.35; P=0.14) were significantly associated with mortality.

Conclusion: In newly diagnosed HF patients, covariates, elevated systolic BP and current smoking were associated with mortality, while diastolic BP, overweight and obesity were not.

THE ROLE OF TISSUE PLASMINOGEN ACTIVATOR IN BLOOD PRESSURE REGULATION FOLLOWING STRESS

Trang EP1, Jackson KL1, Sashinhandran M1, Stevenson ER1, Johns E1,2, Davey PJ1, Medcalf RF1, Head GA1

1Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; 2Department of Pharmacology, Monash University, Clayton, Melbourne, Victoria, Australia; 3Australian Centre of Blood Disease, Melbourne, Victoria, Australia

Background: Stress-related hypertension is associated with increased activity in regions of the brain subserving the stress response. Tissue plasminogen activator (tPA) is an important mediator of synaptic plasticity, Integrins, it is also highly expressed in brain regions which integrate the cardiovascular and behavioral response to incoming sensory modalities. Chronic stress is reported to attenuate synaptic plasticity, suggesting there may be an effect on mediators such as IAP.

Aims: To determine the contribution of neural IAP to cardiovascular parameters in the presence and absence of chronic stress.

Methods: Mice with neural overexpression of IAP (TG), global knock-out of IAP (KO) and wild-type (WT) controls were implanted with radiotelemetry probes allowing measurement of blood pressure (BP), heart rate (HR) and locomotor activity. 24-H BP recordings and pressure response to acute stressors (direty cage and restraint stress) were measured before and after 3 weeks of chronic stress treatment (2 h of stress per day) or no stress. IAP activity was measured using chemiluminescence assay.

Results: Neuro IAP measured over 24 h was significantly lower in all groups before and after chronic stress (P<0.29). Prior to chronic stress treatment, the pressor response to dirty cage switch stress and restraint stress was similar between all strains (P=0.13). Taken together, this suggests that IAP does not affect the cardiac response to acute stressors. Following chronic stress treatment, all strains showed a similar attenuation in pressor response to dirty cage switch and restraint stress (P>1.0). However, when introduced to a novel shaker stress, chronically stressed WT mice showed a 37% and 150% greater pressor response when compared to chronically stressed TG and KO mice, respectively (P<0.04).

Conclusion: IAP is not involved in the pressor response to chronic stressors, or even the adaptation to repeated stress. However, IAP may be important for the sensitization to novel stressors under long-term adverse conditions. Similar findings in the overexpression of IAP and knock-out mice suggests that there may need to be an optimal level of IAP.

HYPERTENSION PREVALENCE AND BLOOD PRESSURE VARIABILITY AMONG CHILDREN AGED 5 TO 17 YEARS OLD: RESULTS FROM THE 2011–2013 AUSTRALIAN HEALTH SURVEY

Veloudi P1, Blizzard L1, Velakoul H2, Schultz MD3, Sharman JE4

1Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; 2Department of Medicine, School of Clinical Sciences at Monash Health, Monash Medical Centre, Melbourne, Victoria, Australia

Background: Blood pressure (BP) screening in children is not a routine clinical assessment, partly due to concerns about diagnostic accuracy and controversy over normative reference BP values. Clinic BP accuracy in children is thought to be compromised by increased BP variability (BPV) and falsely elevated readings which normalize over repeated measurements. However, these issues have not been investigated.

Aims: To determine the prevalence of hypertension and the role of BP among the largest population study of Australian children to date.

Methods: Two consecutive BP measurements were recorded by oscilometry among 3,047 children (aged 12 years; 95% CI 12.1, 13.2; males 52%) from the 2011–2013 Australian Health Survey. A 3rd BP reading was taken if the difference between the first and second SBP readings (ΔSBP) was ≥10 mmHg. ΔSBP was calculated as the coefficient of variation (CV); (SD/mean SBP) x 100) for children with three SBP readings.

Results: The prevalence of hypertension, as defined according to age, sex and height reference BP values, was 4.0% and this was significantly greater in overweight compared with non-overweight children (7.3% vs. 3.6%). From the first to second to third measurements, SBP decreased in 58%, did not change in 10%, and increased in 32% of the population. The strongest independent correlate of SBP were sex (β=0.13; P=0.003), height (β=0.19; P=0.001), body mass index (BMI; β=0.61; P<0.001), serum vitamin B12 (β=0.007; P=0.005), serum ferritin (β=0.01; P=0.018) and urine sodium concentration (β=0.03; P=0.023). BPV and ΔSBP were significantly higher among children with hypertension compared to children with normal SBP (13.1 mmHg [95% CI 9.7, 16.5] vs. 7.8 mmHg [95% CI 7.5, 8.3]; P<0.004 and ASBP: 13.8 mmHg [95% CI 9.5, 18.4] vs. 6.4 mmHg [95% CI 6.0, 6.7]; P=0.001). Minimum ASBP corresponded to normal BP irrespective of age.

Conclusions: Hypertension prevalence is 4% among Australian children, and is associated with increased BPV, increased BMI, and nutrient biomarkers. Importantly, BPV does not necessarily correlate with repeated measurements and the magnitude of BPV has clinical relevance with respect to hypertension diagnosis.

CHANGES IN INTRARENAL CATECHOLAMINES IN DIABETES AND HYPERTENSION

Watson AMDA1, Gould EAM1, Jackson KL1, Moretti J1, Ekelis N1, Lambert GW1, Head GA1, Jandeleit-Dahm KAM1

1Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia; 2Central Clinical School, Department of Medicine, Monash University, Melbourne, Victoria, Australia

Background: We and others have found greater levels of norepinephrine (NA) content in hypertensive rodents as compared to normotensive controls. Using the hypertensive SHR mouse model, we have previously found greater cortical tubular staining for the neural marker tyrosine hydroxylase (TH) in kidneys of hypertensive BPH/2J Schlager mice. Changes in intrarenal nerves in diabetes have not, however, been investigated previously.

Aim: To investigate the effect of diabetes on neural staining and catecholamine content in kidneys of Schlager mice with BPH/2J and without BPH/2J concomitant hypertension.

Methods: After 10 weeks of study, hypertensive BPH/2J and normotensive BPH/2J Schlager mice with and without concomitant streptozocin-induced diabetes (55 mg/kg, i.p.) were placed in metabolic cages for 24 h, after which their kidneys were collected for analysis. In a separate group of mice BP telemetry probes were implanted.

Results: Induction of diabetes did not change the hypertensive status of BPH/2J mice (mean arterial pressure: 135±1 vs. 131±3 mmHg for non-diabetic vs. diabetic BPH/2J mice, respectively). However, when introduced to a novel shaker stress, chronically stressed WT mice showed a 37% and 150% greater pressor response when compared to chronically stressed TG and KO mice, respectively (P<0.04).

Conclusion: IAP is not involved in the pressor response to chronic stressors, or even the adaptation to repeated stress. However, IAP may be important for the sensitization to novel stressors under long-term adverse conditions. Similar findings in the overexpression of IAP and knock-out mice suggests that there may need to be an optimal level of IAP.
mice had significantly less NA and dopamine levels compared to mice with hypertension alone. Hypertensive mice had significantly more cortical tubular TH staining than normotensive mice. This was not, however, seen in diabetic hypertensive mice.

Conclusion: The present data indicate that diabetes alters renal nerve density and distribution in a manner which is independent of hypertensive status. The findings suggest that diabetes alters neural function in the kidney.

ADRENOGONITOTROPIC HORMONE ADMINISTRATION IMPROVES THE DIAGNOSTIC PERFORMANCE OF ADRENAL VEIN SAMPLING

Wolley MJ, Ahmed AH, Gordon RD, Stowasser M

Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia

Background: Adrenal vein sampling (AVS) is vital for determining treatment options for primary aldosteronism (PA), but is a difficult procedure. Successful cannulation depends on correct catheter placement, judged by adrenal to peripheral vein cortisol gradients of ≥3. Aldosterone/cortisol (A/F) ratios are then calculated to correct aldosterone concentration for dilution from non-adrenal blood, and comparisons are made between left, right and peripheral A/F ratios to determine if the disease is unilateral. Adrenocorticotropic hormone (ACTH) infusion or bolus has been reported to improve AVS success rates by increasing cortisol secretion, but effects on aldosterone and thus lateralization are controversial.

Aim: To determine the effects of ACTH administration on AVS in regard to success rates and lateralization of PA.

Methods: AVS was performed in the morning after overnight recumbency in patients with PA confirmed by fludrocortisone suppression test. After bilateral sequential sampling, the catheters were withdrawn and a bolus of 250 μg of ACTH was given. After 15 minutes bilateral sampling was repeated.

Results: From 45 AVS procedures 413 samples were obtained; 214 pre-ACTH and 199 post-ACTH. The mean peripheral cortisol increased from 14.9 to 26 (P<0.001) with ACTH. Pre-ACTH, 76/91 (83.5%) left samples were adequate (cortisol gradient ≥3), improving to 86/90 (95.6%) post-ACTH (cortisol gradient ≥5) (P=0.014). Pre-ACTH 83/98 (84.7%) right samples and post-ACTH 85/92 (92.4%) were adequate (P=0.12). Overall 38 procedures achieved adequate cortisol gradients both pre and post-ACTH, and in 33 of these a clear diagnostic indication of unilateral or bilateral was achieved both pre and post-ACTH. Of these 33, 21 were bilateral and 9 unilateral both before and after ACTH. Two further cases that appeared bilateral before ACTH were unilateral after ACTH (one surgically operated and cured and one treated medically), and one was unilateral before ACTH and bilateral afterwards (treated medically with good result).

Nine cases had a non-diagnostic study pre-ACTH but a diagnostic study post-ACTH, of which 3 were unilateral and 6 were bilateral (33/45 diagnostic studies pre-ACTH vs. 42/45 post-ACTH; P=0.02).

Conclusions: ACTH improved cortisol gradients and AVS success, resulting in an improved proportion of diagnostic studies. There was a low proportion of discordance between pre- and post-ACTH diagnoses, suggesting that ACTH is unlikely to confound lateralization.

OBSTRUCTIVE SLEEP APNOEA IS COMMON IN PATIENTS WITH PRIMARY ALDOSTERONISM AND IMPROVES WITH ADRENALECTOMY OR MINERALOCORTICOID RECEPTOR ANTAGONISTS

Endocrine Hypertension Research Centre, University of Queensland School of Medicine, Greenslopes and Princess Alexandra Hospitals, Brisbane, Queensland, Australia; †Department of Nephrology, Royal Brisbane and Women’s Hospital, Brisbane, Queensland, Australia

Background: Obstructive sleep apnoea (OSA) commonly co-exists with primary aldosteronism, particularly in the setting of resistant hypertension. The exact nature of the relationship is unclear, but evidence from other patient groups suggests that states of fluid and sodium retention can increase upper airway resistance and contribute to sleep apnoea. It is unclear, however, if treatment via mineralocorticoid receptor blockade, or adrenalectomy (for aldosterone producing adenoma, APA), improves OSA parameters in these patients.

Aim: To determine if specific medical or surgical treatment of primary aldosteronism improves OSA, as measured by the apnoea hypopnea index (AHI).

Methods: Patients undergoing diagnostic workup for primary aldosteronism were recruited if they had any symptoms suggestive of OSA (significant snoring, witnessed apnoeas, morning fatigue/headache, daytime somnolence). Patients with confirmed primary aldosteronism underwent polysomnography (PSG) at baseline and again at least 3 months after specific treatment for primary aldosteronism. Patients with severe OSA were referred for continuous positive airway pressure (CPAP) and only restudied with PSG if this had not yet commenced at the planned time of restudy.

Results: Of 34 patients with primary aldosteronism who were screened, 7 (21%) had no evidence of OSA (AHI <3), and 9 (26%) had mild (AHI 5–15), 8 (24%) moderate (AHI 15–30) and 10 (29%) severe OSA (AHI ≥30). 20 patients had repeat PSG performed ≥3 months after treatment for primary aldosteronism (mineralocorticoid receptor antagonists in 13 with bilateral PA and adrenalectomy in 7 with unilateral PA). In this group the median AHI reduced from 22.5 ± 14.75D to 12.3 ± 12.15D (P=0.018). The AH1 fell in 15 patients (10 bilateral and 5 unilateral) and remained the same or increased in 5 (3 bilateral and 2 unilateral).

There was no significant change in median patient weight (95.9 kg vs. 98.5 kg; P=0.34; mean change +0.66 kg). A small but significant reduction in neck circumference occurred, however (41.6 cm vs. 41.2 cm; P=0.012; mean change –0.56cm).

Conclusions: Obstructive sleep apnoea is a common finding in patients with primary aldosteronism, and improves with specific therapy for this condition. Aldosterone and sodium-mediated fluid retention in the upper airways and neck region may be a potential mechanism for this relationship.
Abstracts From the 37th Annual Scientific Meeting of the HBPRCA

Hypertension. 2016;67:e7-e21
doi: 10.1161/HYP.0000000000000042

Hypertension is published by the American Heart Association, 7272 Greenville Avenue, Dallas, TX 75231
Copyright © 2016 American Heart Association, Inc. All rights reserved.
Print ISSN: 0194-911X. Online ISSN: 1524-4563

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/67/5/e7

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/