Body Mass Index Predicts 24-Hour Urinary Aldosterone Levels in Patients With Resistant Hypertension

Tanja Dudenbostel, Lama Ghazi, Mingchun Liu, Peng Li, Suzanne Oparil, David A. Calhoun

Abstract—Prospective studies indicate that hyperaldosteronism is found in 20% of patients with resistant hypertension. A small number of observational studies in normotensive and hypertensive patients suggest a correlation between aldosterone levels and obesity while others could not confirm these findings. The correlation between aldosterone levels and body mass index (BMI) in patients with resistant hypertension has not been previously investigated. Our objective was to determine whether BMI is positively correlated with plasma aldosterone concentration, plasma renin activity, aldosterone:renin ratio, and 24-hour urinary aldosterone in black and white patients. We performed a cross-sectional analysis of a large diverse cohort (n=2170) with resistant hypertension. The relationship between plasma aldosterone concentration, plasma renin activity, aldosterone:renin ratio, 24-hour urinary aldosterone, and BMI was investigated for the entire cohort, by sex and race (65.3% white, 40.3% men). We demonstrate that plasma aldosterone concentration and aldosterone:renin ratio were significantly correlated to BMI (P<0.0001) across the first 3 quartiles, but not from the 3rd to 4th quartile of BMI. Plasma renin activity was not correlated with BMI. Twenty-four–hour urinary aldosterone was positively correlated across all quartiles of BMI for the cohort (P<0.0001) and when analyzed by sex (men P<0.0001; women P=0.0013) and race (P<0.05), and stronger for men compared with women (r=0.19, P<0.001 versus r=0.05, P=0.431, P=0.028) regardless of race. In both black and white patients, aldosterone levels were positively correlated to increasing BMI, with the correlation being more pronounced in black and white men. These findings suggest that obesity, particularly the abdominal obesity typical of men, contributes to excess aldosterone in patients with resistant hypertension. (Hypertension. 2016;68:995-1003. DOI: 10.1161/HYPERTENSIONAHA.116.07806.)

Key Words: association ■ body mass index ■ body weight ■ hypertension ■ obesity
adiposity and is reflected in a positive correlation between 24-hour urinary excretion of aldosterone and BMI.

Methods

The study is a cross-sectional analysis of 2170 black and white patients with RHTN who referred to the University of Alabama at Birmingham Hypertension Clinic during the 12-year period 2000 to 2012. RHTN was defined as clinic BP >140/90 mm Hg with a concurrent use of 3 or more antihypertensive agents of different classes, including a diuretic, if tolerated. All patients underwent a routine physical examination, evaluation of demographic characteristics (age, sex, and race), medical history (duration of hypertension, comorbidities, number and classes of antihypertensive medications), vital signs (clinic BP and heart rate), and weight assessment. Race and height were self-reported. Body weight was measured with a digital scale according to standardized methods. BMI was calculated as weight per height squared (kg/m²). Obesity was defined as BMI ≥30 kg/m², 16

BP was measured by trained personal after at least 5 minutes of rest in a relaxed sitting position, using the auscultatory method with a manual sphygmomanometer (Welch Allyn, Inc, Skaneateles Falls, NY) according to guidelines. The arm was supported at heart level and a correctly sized cuff size with the air bladder encircling at least 80% of the arm was used. The BP was measured twice at intervals of at least 1 minute in each arm, and the average of 2 readings in the arm with the higher BP reading was used for final BP value.

Biochemical assessment included serum potassium (s-K⁺), serum creatinine (s-Crea), PAC, plasma renin activity (PRA), 24-hour urinary aldosterone (24-hour UAldo), potassium (24-hour U-K⁺), sodium (24-hour U-Na⁺), and creatinine (24-hour U-Crea). Aldosterone:renin ratio (ARR) was calculated by the formula ARR=PAC/PRA. PAC, PRA, and 24-hour UAldo levels were analyzed by mass spectrometry at Mayo Clinic (Mayo Medical Laboratories, Rochester, MN). Estimated glomerular filtration rate was calculated with use of the Modification of Diet in Renal Disease formula. Patients were instructed to begin the urine collection after the first morning void. All urine was collected in a prepared plastic jug to which 25 mL of 50% acetic acid had been added as a preservative. The last urine sample was saved into the container exactly 24 hours after beginning the collection. Patients were instructed to bring the samples to the laboratory early in the morning on the same day they completed the collection. At the time of this laboratory visit, a morning blood sample was collected for measurement of PAC and PRA. Adequacy of the 24-hour urine collection was assessed by measuring 24-hour U-Crea by comparing total creatinine in the sample to predicted creatinine. The 24-hour urine collection was obtained while patients were consuming their usual diet and without change in their level of physical activity.

Exclusion criteria for data analysis were use of mineralocorticoid receptor antagonist at the time biochemical assessment, incomplete urinary collection evaluated by low 24-hour U-Crea, and chronic kidney disease stages IV to V.

Statistical Analysis

PAC, PRA, ARR, and 24-hour UAldo levels were related to categorized quartiles of BMI for the entire cohort and for sex and race. The quartile cutoffs were Quartile (Q) 1: <28.1 kg/m²; Q2 BMI ≥28.1 and BMI <32.1 kg/m²; Q3: BMI ≥32.1 and <36.6 kg/m²; and Q4: BMI ≥36.6 kg/m².

The ANCOVA method was used to determine whether population means of PAC, PRA, ARR, and 24-hour UAldo levels were equal across BMI quartiles, while controlling for age. Because of their skewed distribution, the levels of PAC, PRA, ARR, and 24-hour UAldo were log-transformed and the transformed outcomes met the normal assumption well. The age-adjusted means were compared using t test with Bonferroni correction for multiplicity. The original scale of the outcomes was obtained by lognormal distribution approximation. Statistical analysis was performed using SAS 9.2 software (SAS Institute Inc, Cary, NC).

This study was approved by the University of Alabama at Birmingham Institutional Review Board and was conducted according to institutional guidelines.

Results

Patient characteristics are shown in Table 1. In this single-center cohort of 2170 patients, 2086 patients met inclusion criteria and were included in the analysis (Figure S1 in the online-only Data Supplement). Patients were on average 57.0±14.0 years of age, 59.5% female, and 35.2% black. Black patients were significantly younger than white patients (54.0±13.0 versus 59.0±14.0 years, P<0.001; Table 2). For the entire cohort, the mean BMI was 31.1±7.2 kg/m² (Table 1). Obesity, defined as BMI ≥30 kg/m², was present in 62.8% of patients. The BMI range within the cohort was 15.5–73.8 kg/m².

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients (n=2086)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>57.0±14.0</td>
</tr>
<tr>
<td>Women, %</td>
<td>59.5</td>
</tr>
<tr>
<td>Black, %</td>
<td>35.2</td>
</tr>
<tr>
<td>Other,* %</td>
<td>0.7</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>31.1±7.2</td>
</tr>
<tr>
<td>BMI range, kg/m²</td>
<td>15.5–73.8</td>
</tr>
<tr>
<td>HTN, y</td>
<td>16.0±11.0</td>
</tr>
<tr>
<td>No. of antihypertensive agents</td>
<td>4.2±1.0</td>
</tr>
<tr>
<td>SBP, mm Hg</td>
<td>158.0±28.0</td>
</tr>
<tr>
<td>DBP, mm Hg</td>
<td>86.0±16.0</td>
</tr>
<tr>
<td>Obesity, %</td>
<td>62.8</td>
</tr>
<tr>
<td>HLD, %</td>
<td>61.7</td>
</tr>
<tr>
<td>OSA, %</td>
<td>27.9</td>
</tr>
<tr>
<td>HF, %</td>
<td>15.2</td>
</tr>
<tr>
<td>CKD, %</td>
<td>18.8</td>
</tr>
<tr>
<td>CAD, %</td>
<td>16.1</td>
</tr>
<tr>
<td>Diabetes mellitus, %</td>
<td>27.9</td>
</tr>
</tbody>
</table>

Biochemical analysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Patients (n=2086)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-Crea, mg/dL</td>
<td>1.1±0.4</td>
</tr>
<tr>
<td>S-K⁺, mEq/L</td>
<td>4.0±0.5</td>
</tr>
<tr>
<td>PAC, ng/dL</td>
<td>10.9±9.0</td>
</tr>
<tr>
<td>PRA, ng/mL/h</td>
<td>3.6±8.0</td>
</tr>
<tr>
<td>ARR</td>
<td>12.8±16.8</td>
</tr>
<tr>
<td>24-h UAldo, μg</td>
<td>12.1±9.2</td>
</tr>
<tr>
<td>24-h U-Na⁺, mEq</td>
<td>179.0±84.0</td>
</tr>
<tr>
<td>24-h U-K⁺, mEq</td>
<td>63.0±33.0</td>
</tr>
<tr>
<td>24-h UVol, mL</td>
<td>2056.0±913.0</td>
</tr>
<tr>
<td>24-h U-Crea, mg</td>
<td>1609.0±626.0</td>
</tr>
</tbody>
</table>

Values are mean±SD. ARR indicates aldosterone:renin ratio; BMI, body mass index; CAD, coronary artery disease; CKD, chronic kidney disease; DBP, diastolic blood pressure; HF, heart failure; HLD, hyperlipidemia; HTN, hypertension; OSA, obstructive sleep apnea; PAC, plasma aldosterone concentration; PRA, plasma renin activity; SBP, systolic blood pressure; S-Crea, serum creatinine; S-K⁺, serum potassium; UAldo, urinary aldosterone; U-Crea, urinary creatinine; U-Na⁺, urinary sodium; U-K⁺, urinary potassium; and UVol, urinary volume.

*Hispanics, Indian, Native American, and Asian.
15.5 to 73.8 kg/m². Overall, men and women had a similar BMI (31.2±5.6 versus 31.0±8.1 kg/m², P=0.42). However, when analyzed by race, white men had a significantly higher BMI than white women (30.8±5.3 versus 28.5±6.7 kg/m², P<0.001), while in black patients, black women were more obese than black men (34.6±8.5 versus 32.5±6.1 kg/m², P<0.001; Table 2). Black men and women had a significantly higher BMI than white men and women (33.9±7.9 versus 29.5±6.2 kg/m², P<0.001; Table 2). Patients were treated with an average of 4.2±1.0 antihypertensive agents.

Stratification by sex revealed that men and women had similar PAC, PRA, and ARR levels (Table 2). In contrast, 24-hour UAldo levels were significantly higher in men compared with women (24-hour UAldo 14.6±9.9 versus 10.4±8.1 µg, P<0.001). This differential was present across all quartiles of BMI (Figure 2), but was exaggerated in the 3rd and 4th quartiles because of greater increases in 24-hour UAldo levels in men with higher BMIs (Figure 2). The correlation between 24-hour UAldo levels and BMI after adjustment for age and race was significantly stronger in men (r=0.19, P<0.001; 95% confidence interval) compared with women (r=0.05, P=0.031, 95% confidence interval; Figure 3). This observed sex difference was true for both black and white men versus women (Table 2). Regression analysis indicated that after adjusting for age and race, BMI remained a significant predictor of 24-hour UAldo levels. For every unit increase of BMI, there was a 0.352 U increase of 24-hour UAldo in men compared with a smaller 0.0714 U increase of 24-hour UAldo in women.

Univariate analysis showed that black patients had significantly higher PAC (11.4±9.4 versus 10.6±8.8 ng/mL, P<0.05), lower PRA (2.2±4.5 versus 3.5±6.0 ng/mL per hour, P=0.001), higher ARR (16.4±18.5 versus 12.3±17.2, P<0.001), and higher 24-hour UAldo levels (12.6±9.3 versus 11.2±8.4 µg, P<0.05) compared with white patients (Table 2). Blacks were

Table 2. Patient Characteristics Are Shown by Sex and Race

<table>
<thead>
<tr>
<th>Parameter</th>
<th>All, n=2086</th>
<th>Men, n=845</th>
<th>Women, n=1241</th>
<th>Black, n=735</th>
<th>Whites, n=1321</th>
<th>Black Men, n=242</th>
<th>Black Women, n=483</th>
<th>White Men, n=584</th>
<th>White Women, n=737</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td>57.0±14.0</td>
<td>55.0±13.0</td>
<td>58.0±15.0</td>
<td>54.0±13.0</td>
<td>59.0±14.0</td>
<td>52.0±13.0</td>
<td>54.0±13.0**</td>
<td>57.0±13.0</td>
<td>61.0±15.0**</td>
</tr>
<tr>
<td>BMI, kg/m²</td>
<td>31.1±7.2</td>
<td>31.2±5.6</td>
<td>31.0±8.1**</td>
<td>33.9±7.9</td>
<td>29.5±6.2*</td>
<td>32.5±6.1</td>
<td>34.6±6.5***</td>
<td>30.8±5.3</td>
<td>28.5±6.7*</td>
</tr>
<tr>
<td>HTN, y</td>
<td>16.0±11.0</td>
<td>16.0±11.0</td>
<td>17.0±12.0**</td>
<td>17.0±11.0</td>
<td>16.0±12.0**</td>
<td>16.0±11.0</td>
<td>17.0±11.0**</td>
<td>16±11.4</td>
<td>16.0±12.0**</td>
</tr>
<tr>
<td>SBP, mmHg</td>
<td>158.0±28.0</td>
<td>156.0±28.0</td>
<td>160.0±27.6***</td>
<td>155.0±26.0</td>
<td>160.0±29.0***</td>
<td>154.0±26.0</td>
<td>155.0±26.0**</td>
<td>157.0±29.0</td>
<td>163.0±28.0***</td>
</tr>
<tr>
<td>DBP, mmHg</td>
<td>86.0±16.0</td>
<td>88.0±16.0</td>
<td>84.0±15.2***</td>
<td>88.0±15.0</td>
<td>84.0±16.0***</td>
<td>90.0±14.0</td>
<td>87.0±15.0</td>
<td>87.0±17.0</td>
<td>82.0±15.0**</td>
</tr>
<tr>
<td>Crea, mg/dL</td>
<td>1.1±0.4</td>
<td>1.2±0.4</td>
<td>1.0±0.3*</td>
<td>1.1±0.4</td>
<td>1.0±0.4</td>
<td>1.3±0.4</td>
<td>1.0±0.3*</td>
<td>1.2±0.3</td>
<td>0.9±0.4</td>
</tr>
<tr>
<td>K+, mEq/L</td>
<td>4.0±0.5</td>
<td>4.0±0.5</td>
<td>4.0±0.5**</td>
<td>3.9±0.5</td>
<td>4.1±0.5*</td>
<td>3.9±0.5</td>
<td>4.1±0.5**</td>
<td>4.1±0.5</td>
<td>4.1±0.5**</td>
</tr>
<tr>
<td>PAC, ng/dL</td>
<td>10.9±9.0</td>
<td>10.7±9.7</td>
<td>11.0±9.6**</td>
<td>11.4±9.4</td>
<td>10.6±8.8***</td>
<td>11.2±8.7</td>
<td>11.5±9.7**</td>
<td>10.5±7.6</td>
<td>10.7±9.6**</td>
</tr>
<tr>
<td>PRA, ng/mL per h</td>
<td>3.0±5.5</td>
<td>3.1±5.5</td>
<td>3.0±5.5**</td>
<td>2.2±4.5</td>
<td>3.5±6.0*</td>
<td>2.5±4.8</td>
<td>2.1±4.3**</td>
<td>3.4±5.8</td>
<td>3.5±6.2**</td>
</tr>
<tr>
<td>ARR</td>
<td>13.8±17.7</td>
<td>14.6±18.8</td>
<td>13.2±16.9**</td>
<td>16.4±18.5</td>
<td>12.3±17.2*</td>
<td>16.0±15.5</td>
<td>16.5±19.8**</td>
<td>14.0±20.1</td>
<td>11.1±14.5*</td>
</tr>
</tbody>
</table>

**Values are mean±SD. ARR indicates aldosterone:renin ratio; BMI, body mass index; Crea, serum creatinine; DBP, diastolic blood pressure; HTN, hypertension; K+, serum potassium; PAC, plasma aldosterone concentration; PRA, plasma renin activity; SBP, systolic blood pressure; UAldo, urinary aldosterone; U-Crea, urinary creatinine; U-K+, urinary potassium; U-Na+, urinary sodium; and UVol, urinary volume.

*P<0.05.

**Non-significant.

***P<0.001.

Sex and Race

Analysis by Sex

Stratification by sex revealed that men and women had similar PAC, PRA, and ARR levels (Table 2). In contrast, 24-hour UAldo levels were significantly higher in men compared with women (24-hour UAldo 14.6±9.9 versus 10.4±8.1 µg, P<0.001). This differential was present across all quartiles of BMI (Figure 2), but was exaggerated in the 3rd and 4th quartiles because of greater increases in 24-hour UAldo levels in men with higher BMIs (Figure 2). The correlation between 24-hour UAldo levels and BMI after adjustment for age and race was significantly stronger in men (r=0.19, P<0.001; 95% confidence interval) compared with women (r=0.05, P=0.031, 95% confidence interval; Figure 3). This observed sex difference was true for both black and white men versus women (Table 2). Regression analysis indicated that after adjusting for age and race, BMI remained a significant predictor of 24-hour UAldo levels. For every unit increase of BMI, there was a 0.352 U increase of 24-hour UAldo in men compared with a smaller 0.0714 U increase of 24-hour UAldo in women.

Analysis by Race

Univariate analysis showed that black patients had significantly higher PAC (11.4±9.4 versus 10.6±8.8 ng/mL, P<0.05), lower PRA (2.2±4.5 versus 3.5±6.0 ng/mL per hour, P=0.001), higher ARR (16.4±18.5 versus 12.3±17.2, P<0.001), and higher 24-hour UAldo levels (12.6±9.3 versus 11.7±9.0 µg, P<0.05) compared with white patients (Table 2). Blacks were
also significantly younger (53.5±13 versus 59±14 years, \(P<0.001\)), more obese (BMI 33.9±7.9 versus 29.5±6.2 kg/m², \(P<0.001\)), and had lower s-K⁺ (3.9±0.5 versus 4.1±0.5 mEq/L, \(P<0.001\)) and higher s-Crea levels (1.1±0.4 versus 1.04±0.4, \(P<0.05\); Table 2).

After multivariate analysis, the difference between 24-hour UAldo levels in black and white patients with RHTN was no longer present, indicating that there was no racial difference in obesity-associated aldosterone levels.

Consistent with increasing aldosterone levels across quartiles of BMI, we found that 24-hour UK⁺ levels increased significantly with BMI strata (\(P=0.002\); Figure 4). Stratification by sex and race revealed that 24-hour UK⁺ levels were significantly higher in men compared with women overall (24-hour UK⁺ 74.0±35.0 versus 53.0±27.0 mEq, \(P<0.001\)), in black men versus black women (24-hour UK⁺ 64.0±31.0 versus 50.0±25.0 mEq, \(P<0.001\)), and in white men versus white women (24-hour UK⁺ 74.0±35.0 versus

![Figure 1](http://hyper.ahajournals.org/)

Figure 1. Increase of mean plasma aldosterone concentration (PAC; A), plasma renin activity (PRA; B), aldosterone:renin ratio (ARR; C), and 24-h urinary aldosterone (24-h UAldo) levels (D) with increasing quartiles of body mass index (BMI) in patients with resistant hypertension. All panels show Bonferroni corrected \(P\) values.

![Figure 2](http://hyper.ahajournals.org/)

Figure 2. Mean 24-h urinary aldosterone (UAldo) levels to quartiles of body mass index (BMI) in men vs women. White columns represent women and black columns represent men. Figure shows Bonferroni corrected \(P\) values.
UK+ 79.0±36.0 versus 56.0±28.0 mEq, P<0.001; Table 2). This functional relevance of higher aldosterone levels in obese patients indexed by increased 24-hour UK+ excretion was consistent with aldosterone’s kaliuretic action and affected obese more than nonobese individuals (Figure 4). This effect was independent of BP medication, including diuretics (Table S1).

Discussion

The current analysis of a large, diverse cohort of patients with RTHN has several novel findings: (1) BMI positively correlates with 24-hour UAldo levels in men and women, with the relation being stronger in the former; (2) men have significantly higher aldosterone levels than women; and (3) black and white individuals manifest a similar positive correlation between 24-hour UAldo excretion and increasing BMI that is also most evident in men compared with women in both races.

This study is unique in having such a large and diverse cohort of patients with RHTN in relation to BMI and aldosterone status; is the first to base such a large analysis on 24-hour UAldo levels, a more integrated assessment of aldosterone release than PAC; and is limited to patients with RHTN, a subgroup of patients known to commonly have aldosterone excess.4,6

In this study, we also demonstrate the functional relevance of higher aldosterone levels in obese patients in showing that increased 24-hour UK+ excretion is consistent with aldosterone’s kaliuretic action and affects obese individuals significantly more than nonobese individuals independent of BP medication, including diuretics.

Previous data on the clinical relevance of aldosterone excess reported by others and us have indicated that black and white patients with RHTN have a high prevalence of hyperaldosteronism that contributes importantly to antihypertensive treatment resistance,4,6 cardiovascular and cardio-metabolic complications.26–28 Cross-sectional studies have shown that comorbidities such as obstructive sleep apnea (OSA) are associated with hyperaldosteronism and obesity and commonly found in individuals with RHTN.26,29

We have previously shown that hyperaldosteronism is found in 20% of black and white patients with RHTN.6 Separately, in a prospective study of 108 patients with RHTN, we have demonstrated that high aldosterone is associated with left and right ventricular end-diastolic volumes measured by cardiac magnetic resonance imaging, that is, being greater in high versus normal aldosterone patients (P<0.05).26 We have also demonstrated that the treatment with a mineralocorticoid receptor antagonist reduces BP,26 intracardiac volumes, and left ventricular mass as measured by cardiac magnetic resonance imaging in patients with hyperaldosteronism.26

We and others have also reported that the prevalence of OSA is increased in obese patients with RHTN and high aldosterone levels compared with patients without hyperaldosteronism.31–33 These findings were confirmed in a small interventional study, where we further demonstrated that treatment
with mineralocorticoid receptor antagonist reduces the severity of OSA in patients with RHTN.20,34

In previous studies investigating aldosterone levels and BMI in normotensive and hypertensive individuals, but not in patients with RHTN, a sex-dependent relationship between plasma aldosterone and BMI was found, while others did not observe such a relation. Specifically, several studies could only confirm a positive relation in women but not men.39 Similarly, when analyzed by race, the relationship of PAC and BMI has been reported in blacks but not whites,14 or not at all.15 A few small studies reported a positive relation of PAC and BMI.9,10,36 However, these reports did not include subanalysis by sex.

These study findings are novel in finding that aldosterone levels are positively correlated with BMI; that this correlation, independent of race, is more pronounced in men compared with women; and that the relation is seemingly independent of renin. This observation is in contrast to the majority of small studies that found no relationship of aldosterone with BMI overall or in women overall or in black women. The positive finding for both genders in our study might be explained through the analysis of such a large cohort and by the use of PAC, PRA, ARR, and 24-hour UAldo levels as parameters, the latter being a more integrated assessment and therefore better index of aldosterone release than PAC.

The finding of similar aldosterone levels in both, blacks and whites patients with RHTN is in line with other comparative studies investigating aldosterone excretion in white and black normotensive and hypertensive individuals.37,38 However, other groups have found lower aldosterone levels in black children and adolescents.39,40

In our study, an important sex difference is reported for the first time in that men had significantly higher 24-hour UAldo levels than women and the relationship between 24-hour UAldo and BMI was more pronounced in men compared with women. One interpretation of this sex difference is that visceral adipose tissue, more characteristic of men, may be a stronger mediator of aldosterone release than peripheral fat.41 Egan et al41 reported that waist:hip ratio correlated with aldosterone levels in adult men and women, also suggesting that visceral fat may be an important mediator of aldosterone release.39 In addition, conditions such as hyperlipidemia, insulin resistance, and diabetes mellitus are more prevalent in persons with central obesity. Likewise, metabolic syndrome has been shown to be more prevalent in obese patients with primary aldosteronism.28 These factors and others are associated with pathological fat distribution and function and may play a role in the observed aldosterone dysregulation.

Higher aldosterone levels especially in a high sodium setting are associated with cardiovascular complications and impaired surrogate markers such as endothelial dysfunction and arterial stiffness the latter being increased to a greater extent in women with obesity and diabetes mellitus than in men.7,30,43–48

We have previously shown that low-dose spironolactone provides significant additive BP reduction in black and white individuals with RHTN.30 We have also demonstrated that patients with RHTN and PA have impaired endothelium-dependent vascular function and that after 3 months of treatment with spironolactone endothelium-dependent vascular function was significantly improved independently of BP change.56 Recently, it has been shown that a high in fat and sodium diet contributes to cardiac diastolic dysfunction and aortic stiffening in young female mice, abnormalities that were prevented by MR antagonism.47,58 Subsequent experimental studies by the same laboratory have shown that the endothelial MR mediates diet-induced aortic stiffness in females, but not in males, and deletion of the endothelial MR prevented diet-induced aortic fibrosis and stiffness in females.49 These studies suggest that environmental factors such as high dietary sodium can disturb normal MR physiology, especially in females compared with males. However, further studies are needed to elucidate the mechanisms of environmental effects and to what extent they relate to humans.

Potential mechanisms by which adipocytes may contribute to excess aldosterone synthesis and secretion include both generalized stimulation of the renin–angiotensin–aldosterone system and, separately, production and release of products stimulating local or adrenal aldosterone synthesis. Adipocytes have all components of the renin–angiotensin system and thus produce locally generated angiotensin II.50–52 A growing body of evidence suggests that adipocytes produce and release factors that may stimulate aldosterone release independent of renin–angiotensin.53–59

Ehrhart-Bornstein et al56 have provided evidence of adipocyte secretory products that directly stimulate adrenocortical aldosterone secretion. In their studies, placing human adrenocortical cells into medium exposed to isolated adipocytes resulted in a 7-fold increase in aldosterone secretion.56 This stimulatory effect was not inhibited by valsartan, an angiotensin II receptor blocker, indicating an effect independent of angiotensin II. Subsequent studies by the same investigator group has demonstrated that human adipocytes induce an ERK1/2 MAP (extracellular signal-regulated kinase 1/2 mitogen-activated protein) kinases–mediated upregulation of steroidogenic acute regulatory protein and an associated angiotensin II sensitization of human adrenocortical cells.57

Other factors such as high-fat diet, fatty acid oxidation products, adipokines, and others also function as potential aldosterone stimulating factors. In an experimental study with obese, diabetic rats, Jeon et al59 demonstrated that complement-C1q TNF (tumor necrosis factor)-related protein 1 functioned as a potent aldosterone-stimulating factor and was expressed at high levels in adipose tissue and in the zona glomerulosa, inducing a dose-dependent increase in angiotensin II–dependent aldosterone release.

Fatty acid oxidation products or endogenous ones from adipocytes could also stimulate aldosterone synthesis.59 Goodfriend et al59 have shown that oxidized derivatives of linoleic acid stimulate release of aldosterone from isolated rat adrenal cells, with one specific derivative, 12,13-epoxy-9-keto-10(trans)-octadecenoic acid, being particularly potent, suggesting that free fatty acids, serve as potent stimuli of synthesis and release of aldosterone independent of angiotensin II. Similarly, obesity and high-fat diets are both associated with increased aldosterone levels and MR expression, which suggests that in there is a pathophysiologic important dysregulation of ligand and receptor. MR activation has been suggested to potentiate white adipose tissue inflammation, brown fat dysfunction, oxidative stress, fibrosis, and insulin resistance.28,50–62
Recently, Huby et al. demonstrated that adiponectin, a fat-cell-derived hormone (adipokine), is a direct regulator of aldosterone secretion, regulating aldosterone synthase (CYP11B2) expression and production and promotes endothelial dysfunction and cardiac fibrosis.

A generalized stimulation of the renin–angiotensin–aldosterone system is supported by weight loss studies that demonstrate reductions in components of the pathway, including aldosterone. Similarly, treatment with mineralocorticoid receptor antagonists has been shown to be effective in patients with the metabolic syndrome in reducing insulin resistance, BP, collagen formation, and other adverse metabolic consequences of adipocytokine dysfunction. These studies linking adiposity to aldosterone secretion provide support for the hypothesis that obesity contributes directly to inappropriate release of aldosterone, resulting in a state of relative aldosterone excess.

Our study is strengthened by having analyzed a large cohort of patients with RHTN, a subgroup of hypertensive individuals known to have high rates of aldosterone excess. Limitations of our study include its cross-sectional design, and the lack of a nonresistant hypertensive control group.

The current findings support the hypothesis that adiposity stimulates aldosterone release independent of renin in showing that 24-hour UAldo excretion, but not PRA, is positively related to BMI. In fact, the current data demonstrated a negative relation between BMI and PRA. Such an inverse relation would be consistent with an adipose-related secretagogue stimulating aldosterone release, promoting sodium and fluid retention, and thereby leading to suppression of the renin–angiotensin system. The finding that the relationship between BMI and aldosterone is stronger in men compared with women suggests that abdominal adiposity, more typical of men, may be the predominant source of the hypothesized aldosterone secretagogue(s). Such a possibility is consistent with a large body of literature demonstrating that visceral adipose tissue is much more hormonally active than subcutaneous adipose tissue.

The finding of increased aldosterone levels with increasing BMI is consistent with weight loss studies, which demonstrated significant decreases in aldosterone levels after successful weight reduction. Both PAC and PRA decreased in some of these studies, consistent with a generalized stimulation of the renin–angiotensin–aldosterone system. However, in other studies, a decrease of renin levels with weight loss was not observed. The findings of the latter studies suggest weight-related changes in aldosterone levels, independent of renin, suggesting that adiposity may stimulate aldosterone secretion, at least in part, through other mechanisms than renin–angiotensin stimulation.

Perspectives

Hyperaldosteronism is common in patients with RHTN. We found that in a large cohort of black and white patients with RHTN, there was a consistent and significant correlation between 24-hour UAldo levels and BMI. The correlation was stronger in men than women, independent of race and renin, suggesting that factors other than the renin–angiotensin system and, perhaps, more related to visceral obesity, typical of men, might be causative. Confirmation of identification of hypothesized factors that stimulate aldosterone release in obese patients will provide important insight into the growing problem of obesity-related hypertension, and especially, RHTN.

Acknowledgments

All authors contributed to each of the following aspects of the study: (1) substantial contributions to the conception or design of the work; or the acquisition, analysis, or interpretation of data for the work, (2) drafting the work or revising it critically for important intellectual content, (3) final approval of the version to be published, (4) agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Drs Dudenbostel and Li take responsibility for the accuracy and integrity of the data analysis.

Sources of Funding

This work was supported by National Institutes of Health (NIH) grants NIH RO1 HL113004 (Drs Calhoun and Dudenbostel), NIH grant UL1TR001417 (Dr Li), and 3T32DK062710-10S1 (M. Liu).

Disclosures

None.

References

Novelty and Significance

What Is New?

- Body mass index positively correlates with 24-hour urinary aldosterone levels in men and women, with the relation being stronger in the former.
- Men have significantly higher aldosterone levels than women.
- Black and white individuals manifest a similar positive correlation between 24-hour urinary aldosterone excretion and increasing body mass index that is also most evident in men compared with women in both races and is independent of renin.
- We demonstrate the functional relevance of higher aldosterone levels in obese patients in showing that increased 24-hour UK excretion is consistent with aldosterone’s kaluretic action and affects obesity individuals significantly more than nonobese individuals independent of blood pressure medication, including diuretics.

What Is Relevant?

- As with aldosterone’s impact on cardiovascular prognosis, these data suggest a renin and race-independent role and effects of aldosterone secretion in individuals with obesity and resistant hypertension.
Body Mass Index Predicts 24-Hour Urinary Aldosterone Levels in Patients With Resistant Hypertension
Tanja Dudenbostel, Lama Ghazi, Mingchun Liu, Peng Li, Suzanne Oparil and David A. Calhoun

Hypertension. 2016;68:995-1003; originally published online August 15, 2016;
doi: 10.1161/HYPERTENSIONAHA.116.07806

The online version of this article, along with updated information and services, is located on the World Wide Web at:
http://hyper.ahajournals.org/content/68/4/995

Data Supplement (unedited) at:
http://hyper.ahajournals.org/content/suppl/2016/08/15/HYPERTENSIONAHA.116.07806.DC1

Permissions: Requests for permissions to reproduce figures, tables, or portions of articles originally published in Hypertension can be obtained via RightsLink, a service of the Copyright Clearance Center, not the Editorial Office. Once the online version of the published article for which permission is being requested is located, click Request Permissions in the middle column of the Web page under Services. Further information about this process is available in the Permissions and Rights Question and Answer document.

Reprints: Information about reprints can be found online at:
http://www.lww.com/reprints

Subscriptions: Information about subscribing to Hypertension is online at:
http://hyper.ahajournals.org//subscriptions/
Body Mass Index predicts 24-hr Urinary Aldosterone Levels in Patients with Resistant Hypertension

Tanja Dudenbostel, MD1; Lama Ghazi, MD1, Mingchun Liu, BS2, Peng Li, PhD3, Suzanne Oparil, MD1, David A. Calhoun, MD1

1Division of Cardiovascular Disease, Vascular Biology and Hypertension Program University of Alabama at Birmingham, Birmingham, AL
2School of Medicine, University of Alabama at Birmingham, Birmingham, AL
3Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL
Supplemental Table S1. Distribution of antihypertensive agents across quartiles of body mass index. Values are mean ± SD.

<table>
<thead>
<tr>
<th>Quartiles of BMI</th>
<th>Medication</th>
<th>1.Quartile, %</th>
<th>2.Quartile, %</th>
<th>3.Quartile, %</th>
<th>4.Quartile, %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>α-1 blocker</td>
<td>11.7†</td>
<td>31.2*</td>
<td>31.3*</td>
<td>38.1*</td>
</tr>
<tr>
<td></td>
<td>β- blocker</td>
<td>30.4†</td>
<td>73.9*</td>
<td>64.9*</td>
<td>70.0*</td>
</tr>
<tr>
<td></td>
<td>ACEi</td>
<td>20.2†</td>
<td>47.1*</td>
<td>46.6*</td>
<td>51.0*</td>
</tr>
<tr>
<td></td>
<td>ARB</td>
<td>20.8†</td>
<td>41.3*</td>
<td>45.0*</td>
<td>49.0*</td>
</tr>
<tr>
<td></td>
<td>CCB</td>
<td>27.9†</td>
<td>58.7*</td>
<td>61.0*</td>
<td>66.6*</td>
</tr>
<tr>
<td></td>
<td>Diuretic</td>
<td>32.2†</td>
<td>78.3*</td>
<td>76.3*</td>
<td>81.6*</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>11.0†</td>
<td>26.8*</td>
<td>22.9*</td>
<td>27.9*</td>
</tr>
</tbody>
</table>

SD - standard deviation; BMI – body mass index; α 1 – alpha 1; β – beta; ACEi – angiotensin-converting-enzyme inhibitor; ARB – angiotensin II receptor blocker; CCB - Calcium channel blocker; Other include vasodilators, α-2 agonists. Patients in the 1st Quartile of BMI were treated with less medications when compared with patients in the 2nd, 3rd, and 4th quartile of BMI, while there was no difference between patients in the 2nd, 3rd, and 4th quartile of BMI.

* Non-significant
† p<0.05
Supplemental Figure S1: Study flow chart

Patients with resistant hypertension (RHTN) treated with a mineralocorticoid receptor antagonist (MRA), chronic kidney disease (CKD) stage IV-V/ incomplete urine collection were excluded (n=84)